DEPARTMENT OF MECHANICAL ENGINEERING College of Engineering Thalassery

ME202 Advanced Mechanics of Solids

Tutorial-3: Stress-strain relations and 2D problems in elasticity

- 1. Using the stress strain relations, strain compatibility relations, and equations of equilibrium, derive the relationship for plain strain $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)(\sigma_x + \sigma_y) = \frac{-1}{1-\nu}\left(\frac{\partial X}{\partial x} + \frac{\partial Y}{\partial y}\right)X$ and Y are body force components along x and y directions respectively and ν is the Poisson's ratio.
- 2. For steel, the following data is applicable: $E = 206 \times 10^6 k Pa$, $G = 80 \times 10^6 k Pa$. For the given strain matrix at a point, determine the stress matrix.

$$[\epsilon_{ij}] = \begin{bmatrix} 0.001 & 0 & -0.002\\ 0 & -0.003 & 0.003\\ -0.002 & 0.003 & 0 \end{bmatrix}$$

3. A thin rubber sheet is enclosed between two fixed hard steel plates (see Fig.1). Friction between the rubber and steel faces is negligible. If the rubber plate is subjected to stresses σ_x and σ_y as shown, determine the strains ϵ_x and ϵ_y and also the stress σ_z .

Figure 1: Problem-3

- 4. Investigate what problem solved by $\phi = \frac{F}{d^3}xy^2(3d-2y)$ applied to the region included in y = 0, y = d, x = 0 on the side x positive.
- 5. Determine whether the following $\phi = \frac{3F}{4h} \left(xy \frac{xy^3}{3h^2} \right) + \frac{P}{2}y^2$ can be used as a stress function. If so, determine the components of stress represented by it.
- 6. Obtain the expressions for σ_x and σ_y in terms of Lame's constants, strain components and dilation.
- 7. Show that $\phi = A\left(xy^3 \frac{3}{4}xyh^2\right)$ is an Airy's stress function, where A and h are constants. Also show that it represents the stress distribution in a cantilever beam loaded at free end with a point load. Find the value of A if b and h are width and depth respectively.
- 8. The state of stress at a point is given by $[\sigma_{ij}] = \begin{bmatrix} 9 & 0 & 3 \\ 0 & -10 & 1 \\ 3 & 1 & 112 \end{bmatrix} \times 10^3 kPa$ compute the strain tensor for the material with $E = 206 \times 10^6 kPa$, and $G = 80 \times 10^6 kPa$
- 9. Prove that $\phi = Ax^3$ represents Airy's stress function of a 2D problem. Find the stress components.

- 10. Obtain a polynomial stress function such that σ_y varies linearly in the x direction only. All the other components of stress are equal to zero.
- 11. Derive the stress compatibility equation of a 2D plane stress elasticity problem.
- 12. Derive the stress compatibility equation in terms of Airy's stress function for 2D plane stress problem (i) If body force is absent (ii)If body force is present.
- 13. Derive the stress compatibility equation in terms of Airy's stress function for 2D plane strain problem(i) If body force is absent (ii) If body force is present.
- 14. Derive the bending and shear stress distribution in a cantilever loaded at its free end.