# DEPARTMENT OF MECHANICAL ENGINEERING <br> College of Engineering Thalassery 

## ME202 Advanced Mechanics of Solids

## Tutorial-3: Stress-strain relations and 2D problems in elasticity

1. Using the stress strain relations, strain compatibility relations, and equations of equilibrium, derive the relationship for plain strain $\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)\left(\sigma_{x}+\sigma_{y}\right)=\frac{-1}{1-\nu}\left(\frac{\partial X}{\partial x}+\frac{\partial Y}{\partial y}\right) X$ and $Y$ are body force components along $x$ and $y$ directions respectively and $\nu$ is the Poisson's ratio.
2. For steel, the following data is applicable: $E=206 \times 10^{6} k P a, \quad G=80 \times 10^{6} k P a$. For the given strain matrix at a point, determine the stress matrix.

$$
\left[\epsilon_{i j}\right]=\left[\begin{array}{ccc}
0.001 & 0 & -0.002 \\
0 & -0.003 & 0.003 \\
-0.002 & 0.003 & 0
\end{array}\right]
$$

3. A thin rubber sheet is enclosed between two fixed hard steel plates (see Fig.1). Friction between the rubber and steel faces is negligible. If the rubber plate is subjected to stresses $\sigma_{x}$ and $\sigma_{y}$ as shown, determine the strains $\epsilon_{x}$ and $\epsilon_{y}$ and also the stress $\sigma_{z}$.


Figure 1: Problem-3
4. Investigate what problem solved by $\phi=\frac{F}{d^{3}} x y^{2}(3 d-2 y)$ applied to the region included in $y=0, y=$ $d, x=0$ on the side x positive.
5. Determine whether the following $\left.\phi=\frac{3 F}{4 h}\left(x y-\frac{x y^{3}}{3 h^{2}}\right)\right)+\frac{P}{2} y^{2}$ can be used as a stress function.If so, determine the components of stress represented by it.
6. Obtain the expressions for $\sigma_{x}$ and $\sigma_{y}$ in terms of Lame's constants, strain components and dilation.
7. Show that $\phi=A\left(x y^{3}-\frac{3}{4} x y h^{2}\right)$ is an Airy's stress function, where $A$ and $h$ are constants. Also show that it represents the stress distribution in a cantilever beam loaded at free end with a point load. Find the value of $A$ if $b$ and $h$ are width and depth respectively.
8. The state of stress at a point is given by $\left[\sigma_{i j}\right]=\left[\begin{array}{ccc}9 & 0 & 3 \\ 0 & -10 & 1 \\ 3 & 1 & 112\end{array}\right] \times 10^{3} k P a$ compute the strain tensor for the material with $E=206 \times 10^{6} k P a$, and $G=80 \times 10^{6} k P a$
9. Prove that $\phi=A x^{3}$ represents Airy's stress function of a 2 D problem. Find the stress components.
10. Obtain a polynomial stress function such that $\sigma_{y}$ varies linearly in the x direction only. All the other components of stress are equal to zero.
11. Derive the stress compatibility equation of a 2 D plane stress elasticity problem.
12. Derive the stress compatibility equation in terms of Airy's stress function for 2 D plane stress problem (i) If body force is absent (ii)If body force is present.
13. Derive the stress compatibility equation in terms of Airy's stress function for 2 D plane strain problem (i) If body force is absent (ii)If body force is present.
14. Derive the bending and shear stress distribution in a cantilever loaded at its free end.

