DEPARTMENT OF MECHANICAL ENGINEERING
 College of Engineering Thalassery

ME202 Advanced Mechanics of Solids

Tutorial-2: Analysis of Strain

1. The general displacement field in a body, in Cartesian co-ordinates, is given by $u=0.015 x^{2} y+0.03, v=$ $0.005 y^{2}+0.03 x z, w=0.003 z^{2}+0.001 y z+0.005$. Find the strain tensor, $\epsilon_{i j}$ for point $(1,0,2)$
2. The displacement field in a body is given by $\left[\left(x^{2}+y^{2}+2\right) \mathbf{i}+\left(3 x+4 y^{2}\right) \mathbf{j}+\left(2 x^{3}+4 z\right) \mathbf{k}\right] \times 10^{-4}$. Obtain the magnitude of principal strains at location $(1,2,3)$
3. Verify whether the following strain field satisfies equations of compatibility $\epsilon_{x}=P y, \quad \epsilon_{y}=P x, \quad \epsilon_{z}=$ $z P(x+y), \quad \epsilon_{x y}=P(x+y), \quad \epsilon_{y z}=2 P z \quad$ and $\quad \epsilon_{z x}=2 P z$. Where P is a constant.
4. If the displacement field is given by $u_{x}=K x y+y, u_{y}=K x y, u_{z}=2 K(x+y)$, where K is a constant.
(a) Write down the strain matrix.
(b) What is the strain in direction $n_{x}=n_{y}=n_{z}=1 / \sqrt{3}$
5. The displacement field for a body is given by $\mathbf{u}=\left[\left(x^{2}+y^{2}+2\right) \mathbf{i}+\left(3 x+4 y^{2}\right) \mathbf{j}+\left(2 x^{3}+4 z\right) \mathbf{k}\right]$ What is the displaced position of a point originally at $(1,2,3)$?
6. The displacement field is given by $u_{x}=k\left(x^{2}+2 z\right), u_{y}=k\left(4 x+2 y^{2}+z\right), u_{z}=4 k z^{2} \mathrm{k}$ is a very small constant. What are the strains at $(2,2,3)$ in directions
(a) $n_{x}=0, n_{y}=1 / \sqrt{2}, n_{z}=1 / \sqrt{2}$
(b) $n_{x}=1, n_{y}=n_{z}=0$
(c) $n_{x}=0.6, n_{y}=0, n_{z}=0.8$
7. The rectangular components of a small strain at a point is given by the following matrix. Determine the principal strains and the direction of the maximum linear strain

$$
\left[\epsilon_{i j}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & -4 \\
0 & -4 & 3
\end{array}\right]
$$

8. For the displacement field given by $u_{x}=K\left(x^{2}+2 z\right), u_{y}=K\left(4 x+2 y^{2}+z\right), u_{z}=4 K z^{2}$, where K is a very small constant, verify whether the compatibility conditions are satisfied.
9. State the conditions under which the following is a possible system of strains:

$$
\begin{gathered}
\epsilon_{x x}=a+b\left(x^{2}+y^{2}\right) x^{4}+y^{4}, \gamma_{y z}=0 \\
\epsilon_{y y}=\alpha+\beta\left(x^{2}+y^{2}\right)+x^{4}+y^{4}, \gamma_{x z}=0 \\
\gamma_{x y}=A+B x y\left(x^{2}+y^{2}-c^{2}\right), \epsilon_{z z}=0
\end{gathered}
$$

10. The tensorial strain at the origin is given by

$$
\left[\epsilon_{i j}\right]=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 0 & 3 \\
1 & 3 & 1
\end{array}\right] \times 10^{-2}
$$

Determine normal strain along the direction from $(0,0,0)$ to $(3,4,12)$

