DEPARTMENT OF MECHANICAL ENGINEERING
 College of Engineering Thalassery

ME202 Advanced Mechanics of Solids

Tutorial-1: Analysis of Stress

1. A rectangular beam is subjected to a pure bending moment M. The cross section of the beam is shown in Fig. 1. Using the elementary flexure formula, determine the normal and shearing stresses at a point (x, y) on the plane $A B$ shown.

Figure 1: Problem 1
2. The state of stress at a point is characterised by the matrix shown. Determine T_{11} such that there is at least one plane passing through the point in such a way that the resultant stress on that plane is zero. Determine the direction cosines of the normal to that plane.

$$
\tau_{i j}=\left[\begin{array}{ccc}
T_{11} & 2 & 1 \\
2 & 0 & 2 \\
1 & 2 & 0
\end{array}\right]
$$

3. If the rectangular components of stress at a point are as in the matrix below, determine the unit normal of a plane parallel to the z axis,i.e. $n_{z}=0$, on which the resultant stress vector is tangential to the plane

$$
\tau_{i j}=\left[\begin{array}{lll}
a & 0 & d \\
0 & b & e \\
d & e & c
\end{array}\right]
$$

4. Determine the principal stresses, their axes, principal shears and the associated normal stresses for the states of stress characterised by the following stress matrices (units are 1000 kPa).
(a)

$$
\tau_{i j}=\left[\begin{array}{ccc}
18 & 0 & 24 \\
0 & -50 & 0 \\
24 & 0 & 32
\end{array}\right]
$$

(b)

$$
\tau_{i j}=\left[\begin{array}{ccc}
3 & -10 & 0 \\
-10 & 0 & 30 \\
0 & 30 & -27
\end{array}\right]
$$

(c)

$$
\tau_{i j}=\left[\begin{array}{ccc}
12.31 & 4.20 & 0 \\
4.20 & 8.96 & 5.27 \\
0 & 5.27 & 4.34
\end{array}\right]
$$

5. A solid shaft of diameter $d=\sqrt{10} \mathrm{~cm}$ is subjected to a tensile force $P=10,000 \mathrm{~N}$ and a torque $T=$ $5000 N \mathrm{~cm}$. At a point on the surface, determine the principal stresses, the octahedral shearing stress and the maximum shearing stress.
6. The state of stress at a point for a given reference is given below. If a new set of axes $x^{\prime} y^{\prime} z^{\prime}$ is formed by rotating $x y z$ through 60° about z axis,find the new stress tensor

$$
\tau_{i j}=\left[\begin{array}{ccc}
200 & 100 & 0 \\
100 & 0 & 0 \\
0 & 0 & 500
\end{array}\right]
$$

7. At a point P , the rectangular stress components are, $\sigma_{x}=1, \sigma_{y}=-2, \sigma_{z}=4, \tau_{x y}=2, \tau_{y z}=-3$ and $\tau_{z x}=1$ all in units of KPa. Find the principal stresses and directions.
8. Find the principal stresses and check for invariance in the following case.

$$
\tau_{i j}=\left[\begin{array}{ccc}
1 & 2 & 1 \\
2 & -2 & -3 \\
1 & -3 & 4
\end{array}\right]
$$

9. The stress at a point is given by the three principal stresses 100,120 and $200 \mathrm{~N} / \mathrm{mm}^{2}$. Determine the shear and normal stresses on a plane which has normal with direction cosines as $\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}$ and 0 .
10. The state of stress at a point is characterized by the components $\sigma_{x}=100, \sigma_{y}=-40, \sigma_{z}=80, \tau_{x y}=$ $\tau_{y z}=\tau_{z x}=0$ all in $10^{6} \mathrm{~N} / \mathrm{m}^{2}$. Determine the extreme values of shear stresses, their associated normal stresses, the octahedral shear stress and its associated normal stress.
11. The state of stress at a point is given by $\sigma_{x}=\sigma_{y}=\sigma_{z}=\tau_{x y}=\tau_{y z}=\tau_{z x}=\rho$. Determine principal stresses and directions.
12. A cross-section of the wall of a dam is shown in Figure 2. The pressure of water on face OB is also shown. The stresses at any point (x, y) are given by the following expressions

$$
\begin{gathered}
\sigma_{x}=-\gamma y \\
\sigma_{y}=\left(\frac{\rho}{\tan \beta}-\frac{2 \gamma}{\tan ^{3} \beta}\right) \\
\tau_{x y}=\frac{-\gamma x}{\tan ^{2} \beta} \\
\tau_{y z}=\tau_{x z}=\sigma_{z}=0
\end{gathered}
$$

where γ is the specific weight of water and ρ the specific weight of the dam material.
Consider an element OCD and show that this element is in equilibrium under the action of the external

Figure 2: Problem 12
forces (water pressure and gravity force) and the internally distributed forces across the section CD
13. At a point in a stressed material, the principal stresses acting are given by, $\sigma_{1}=120 \mathrm{~Pa}, \sigma_{2}=60 \mathrm{~Pa}, \sigma_{3}=$ $20 P a$. Find the normal and shear stress on a plane whose normal is inclined at an angle of 40° to the σ_{1} axis in the plane containing σ_{1} and σ_{3} stresses and 50° to the σ_{1} axis in the plane containing σ_{1} and σ_{2} stresses. Find also the normal and shear stresses on Octahedral Planes.
14. The state of stress at a particular point relative to the $x y z$ coordinate system is given by the stress matrix

$$
\tau_{i j}=\left[\begin{array}{ccc}
15 & 10 & -10 \\
10 & 10 & 0 \\
-10 & 0 & 40
\end{array}\right] M P a
$$

Determine the normal stress and magnitude and direction of the shear stress on a surface intersecting the point and parallel to the plane given by the equation $2 x-y+3 z=9$
15. (a) Decompose the given stress in to hydrostatic and deviatoric parts.

$$
\tau_{i j}=\left[\begin{array}{ccc}
57 & 0 & 24 \\
0 & 50 & 0 \\
24 & 0 & 42
\end{array}\right] k P a
$$

(b) What is the octahedral normal and shear stress of hydrostatic part
(c) What is the octahedral normal and shear stress of deviatoric part?
16. The stress field of a body is given by $\sigma_{x}=20 x^{2}+y^{2}, \sigma_{y}=30 x^{3}+200, \sigma_{z}=30\left(y^{2}+z^{2}\right), \tau_{x y}=z x$, $\tau_{x z}=y^{2} z, \tau_{y z}=x^{3} y$. Find out the components of body force required for satisfying the equilibrium of the body

