ME 202 : Advanced Mechanics of Solids Transformation of Stress in Three Dimensions

Arun Shal U B
Dept. of Mechanical Engineering
College of Engineering Thalassery

January 14, 2018

1 Introduction

The most general state of stress at a given point may be represented by six components. Three of these components are normal stresses, represented by σ_{x}, σ_{y} and σ_{z} and the other three represented by $\tau_{x y}, \tau_{y z}$ and $\tau_{x z}$ are shear stresses. The same state of stress can be represented by a different set of components if the coordinate axes are rotated as shown in Figure 1. Stress transformation deals with determination of the different components of stress under a rotation of coordinate axes.

Figure 1: General state of stress at a point.

2 Transformation of Stresses

Let ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) and ($\mathrm{X}, \mathrm{Y}, \mathrm{Z}$) denote two rectangular coordinate systems with a common origin as shown in Figure 2. Let the direction cosines of X-axis with respect to coordinate system ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) be l_{x}, l_{y} and l_{z} respectively. Similarly m_{x}, m_{y} and m_{z} are the direction cosines of Y-axis and n_{x}, n_{y} and n_{z} are the direction cosines of Z-axis. These are listed in Table 1 and it should be noted that, here $\theta_{x X}$ denotes angle between x -axis and X -axis.

Table 1: Direction Cosines

	x	y	z
X	$l_{x}=\cos \theta_{x X}$	$l_{y}=\cos \theta_{y X}$	$l_{z}=\cos \theta_{z X}$
Y	$m_{x}=\cos \theta_{x Y}$	$m_{y}=\cos \theta_{y Y}$	$m_{z}=\cos \theta_{z Y}$
Z	$n_{x}=\cos \theta_{x Z}$	$n_{y}=\cos \theta_{y Z}$	$n_{z}=\cos \theta_{z Z}$

Figure 2: Stress components on plane perpendicular to transformed X-axis.

According to Cauchy stress equation, the stress vector on a plane with unit normal \mathbf{n} with direction cosines n_{x}, n_{y} and n_{z} is given by

$$
\stackrel{n}{\mathbf{T}}=\stackrel{n}{T}_{x} \mathbf{i}+\stackrel{n}{T}_{y} \mathbf{j}+\stackrel{n}{T}_{z} \mathbf{k}
$$

where,

$$
\begin{aligned}
& \stackrel{n}{T}_{x}=\sigma_{x} n_{x}+\tau_{y x} n_{y}+\tau_{z x} n_{z} \\
& \stackrel{n}{T}_{y}=\tau_{x y} n_{x}+\sigma_{y} n_{y}+\tau_{z y} n_{z} \\
& \stackrel{n}{T}_{z}=\tau_{x z} n_{x}+\tau_{y z} n_{y}+\sigma_{z} n_{z}
\end{aligned}
$$

Hence, the stress vector on a plane perpendicular to X-axis (Conveniently referred as X-plane), having direction cosines l_{x}, l_{y} and l_{z} is given by,

$$
\stackrel{X}{\mathbf{T}}=\stackrel{X}{T}_{x} \mathbf{i}+\stackrel{X}{T}_{y} \mathbf{j}+\stackrel{X}{T}_{z} \mathbf{k}
$$

where,

$$
\stackrel{X}{T}_{x}=\sigma_{x} l_{x}+\tau_{y x} l_{y}+\tau_{z x} l_{z}
$$

$$
\begin{aligned}
& \stackrel{X}{T}_{y}=\tau_{x y} l_{x}+\sigma_{y} l_{y}+\tau_{z y} l_{z} \\
& \stackrel{X}{T}_{z}=\tau_{x z} l_{x}+\tau_{y z} l_{y}+\sigma_{z} l_{z}
\end{aligned}
$$

The normal stress along X -direction can be obtained by taking the component of $\stackrel{X}{\mathbf{T}}$ along the direction of X -axis. i.e.

$$
\begin{gathered}
\sigma_{X X}=\stackrel{X}{\mathbf{T}} \bullet\left(l_{x} \mathbf{i}+l_{y} \mathbf{j}+l_{z} \mathbf{k}\right) \\
\sigma_{X X}=\stackrel{X}{T_{x}} l_{x}+\stackrel{X}{T} l_{y}+\stackrel{X}{T}_{z} l_{z} \\
\sigma_{X X}=\left(\sigma_{x} l_{x}+\tau_{y x} l_{y}+\tau_{z x} l_{z}\right) l_{x}+\left(\tau_{x y} l_{x}+\sigma_{y} l_{y}+\tau_{z y} l_{z}\right) l_{y} \\
\quad+\left(\tau_{x z} l_{x}+\tau_{y z} l_{y}+\sigma_{z} l_{z}\right) l_{z}
\end{gathered}
$$

After rearranging the above expression, we obtain

$$
\sigma_{X X}=l_{x}^{2} \sigma_{x}+l_{y}^{2} \sigma_{y}+l_{z}^{2} \sigma_{z}+2 l_{x} l_{y} \tau_{x y}+2 l_{y} l_{z} \tau_{y z}+2 l_{z} l_{x} \tau_{z x}
$$

Similarly, using stress vectors of Y-plane and Z-plane, $\sigma_{Y Y}$ and $\sigma_{Z Z}$ can be obtained.

$$
\begin{gathered}
\sigma_{Y Y}=m_{x}{ }^{2} \sigma_{x}+m_{y}{ }^{2} \sigma_{y}+m_{z}{ }^{2} \sigma_{z}+2 m_{x} m_{y} \tau_{x y}+2 m_{y} m_{z} \tau_{y z}+2 m_{z} m_{x} \tau_{z x} \\
\sigma_{Z Z}=n_{x}{ }^{2} \sigma_{x}+n_{y}{ }^{2} \sigma_{y}+n_{z}{ }^{2} \sigma_{z}+2 n_{x} n_{y} \tau_{x y}+2 n_{y} n_{z} \tau_{y z}+2 n_{z} n_{x} \tau_{z x}
\end{gathered}
$$

The shear stress component $\sigma_{X Y}$ is the component of the stress vector in the Y direction on a plane perpendicular to the X axis; that is, it is the Y component of the stress vector $\stackrel{X}{\mathbf{T}}$ acting on the plane perpendicular to the X axis.Thus, $\sigma_{X Y}$ may be evaluated by forming the scalar product of the vector ${ }_{\mathbf{T}}^{X}$ with a unit vector parallel to the Y axis, that is,

$$
\begin{gathered}
\tau_{X Y}=\stackrel{X}{\mathbf{T}} \bullet\left(m_{x} \mathbf{i}+m_{y} \mathbf{j}+m_{z} \mathbf{k}\right) \\
\tau_{X Y}=\stackrel{X}{T}{ }_{x} m_{x}+\stackrel{X}{T_{y}} m_{y}+\stackrel{X}{T}{ }_{z} m_{z} \\
\tau_{X Y}=\left(\sigma_{x} l_{x}+\tau_{y x} l_{y}+\tau_{z x} l_{z}\right) m_{x}+\left(\tau_{x y} l_{x}+\sigma_{y} l_{y}+\tau_{z y} l_{z}\right) m_{y} \\
\\
+\left(\tau_{x z} l_{x}+\tau_{y z} l_{y}+\sigma_{z} l_{z}\right) m_{z} \\
\tau_{X Y}=l_{x} m_{x} \sigma_{x}+l_{y} m_{y} \sigma_{y}+l_{z} m_{z} \sigma_{z}+\left(l_{x} m_{y}+l_{y} m_{x}\right) \tau_{x y}+\left(l_{y} m_{z}+l_{z} m_{y}\right) \tau_{y z} \\
\\
+\left(l_{z} m_{x}+l_{x} m_{z}\right) \tau_{z x}
\end{gathered}
$$

Similar procedures also determine $\sigma_{X Y}$ and $\sigma_{Z X}$ as,

$$
\begin{array}{r}
\tau_{Y Z}=m_{x} n_{x} \sigma_{x}+m_{y} n_{y} \sigma_{y}+m_{z} n_{z} \sigma_{z}+\left(m_{x} n_{y}+m_{y} n_{x}\right) \tau_{x y}+\left(m_{y} n_{z}+m_{z} n_{y}\right) \tau_{y z} \\
+\left(m_{z} n_{x}+m_{x} n_{z}\right) \tau_{z x} \\
\tau_{Z X}=n_{x} l_{x} \sigma_{x}+n_{y} l_{y} \sigma_{y}+n_{z} l_{z} \sigma_{z}+\left(n_{x} l_{y}+n_{y} l_{x}\right) \tau_{x y}+\left(n_{y} l_{z}+n_{z} l_{y}\right) \tau_{y z} \\
+\left(n_{z} l_{x}+n_{x} l_{z}\right) \tau_{z x}
\end{array}
$$

3 Transformation Equation in Matrix Form

Written in matrix form, the transformation equation is :

$$
[\sigma]_{X Y Z}=[T][\sigma]_{x y z}[T]^{T}
$$

where, $[T]$ is the transformation matrix and $[T]^{T}$ is the transpose of the transformation matrix given by:

$$
[T]=\left[\begin{array}{ccc}
l_{x} & l_{y} & l_{z} \\
m_{x} & m_{y} & m_{z} \\
n_{x} & n_{y} & n_{z}
\end{array}\right]
$$

and

$$
[T]^{T}=\left[\begin{array}{lll}
l_{x} & m_{x} & n_{x} \\
l_{y} & m_{y} & n_{y} \\
l_{z} & m_{z} & n_{z}
\end{array}\right]
$$

4 Example 1

Given the components of stress as $\sigma_{x}=1, \sigma_{y}=2, \sigma_{z}=-1, \tau_{x y}=2, \tau_{y z}=1$ and $\tau_{x z}=-3$. Transform these components based on a new x and y co-ordinates turned through 45° in the anti clockwise direction and the z -axis unchanged.

Solution

Let the given state of stress is in the xyz co-ordinates and the new co-ordinates be XYZ. The given state of stress can be written in the tensor form as

$$
[\sigma]_{x y z}=\left[\begin{array}{ccc}
1 & 2 & -3 \\
2 & 2 & 1 \\
-3 & 1 & -1
\end{array}\right]
$$

The transformation matrix is given by,

$$
[T]=\left[\begin{array}{ccc}
l_{x} & l_{y} & l_{z} \\
m_{x} & m_{y} & m_{z} \\
n_{x} & n_{y} & n_{z}
\end{array}\right]=\left[\begin{array}{ccc}
\cos 45 & \cos 45 & \cos 90 \\
\cos 135 & \cos 45 & \cos 90 \\
\cos 90 & \cos 90 & \cos 0
\end{array}\right]=\left[\begin{array}{ccc}
0.707 & 0.707 & 0 \\
-0.707 & 0.707 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Applying these values in equations derived in the previous section, we get $\sigma_{X}=3.499, \tau_{X Y}=0.499, \tau_{X Z}=-1.414$ $\sigma_{Y}=-0.499, \sigma_{Z}=-1, \tau_{Y Z}=2.828$
Alternatively;

$$
[\sigma]_{X Y Z}=[T][\sigma]_{x y z}[T]^{T}
$$

$$
[\sigma]_{X Y Z}=\left[\begin{array}{ccc}
0.707 & 0.707 & 0 \\
-0.707 & 0.707 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 2 & -3 \\
2 & 2 & 1 \\
-3 & 1 & -1
\end{array}\right]\left[\begin{array}{ccc}
0.707 & -0.707 & 0 \\
0.707 & 0.707 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

$$
=\left[\begin{array}{ccc}
3.499 & 0.499 & -1.414 \\
0.499 & -0.499 & 2.828 \\
-1.414 & 2.828 & -1.000
\end{array}\right]
$$

