Analysis of Stress - Continued.

Advanced Mechanics of Solids ME202

Arun Shal U B
Department of Mechanical Engineering College of Engineering Thalassery

January 13, 2018

Outline

Stress Transformation

Principal Stresses and Principal planes

Octahedral Stresses

Hydrostatic and Deviatoric Stress Components

Equations of Equilibrium

Stress Transformation

Stress transformation deals with determination of the different components of stress under a rotation of coordinate axes.

Figure: General state of stress at a point.

Stress Transformation

Definition: The matrix form of the stress tensor is different for different coordinate systems. However, the matrix of one coordinate system is related to the matrix of another coordinate system. The process of converting the stress matrix of one coordinate system to another coordinate system is called stress transformation

Stress Transformation

Figure: Stress components on plane perpendicular to transformed X -axis.

Table: Direction Cosines

	x	y	z
X	$I_{x}=\cos \theta_{x X}$	$I_{y}=\cos \theta_{y X}$	$I_{z}=\cos \theta_{z X}$
Y	$m_{x}=\cos \theta_{x Y}$	$m_{y}=\cos \theta_{y Y}$	$m_{z}=\cos \theta_{z Y}$
Z	$n_{x}=\cos \theta_{x Z}$	$n_{y}=\cos \theta_{y z}$	$n_{z}=\cos \theta_{z Z}$

Cauchy's stress formula

Figure: Tetrahedron at point P

For a plane with direction cosines n_{x}, n_{y} and n_{z},

$$
\stackrel{n}{\mathbf{T}}=\stackrel{n}{T}_{x} \mathbf{i}+\stackrel{n}{T}_{y} \mathbf{j}+\stackrel{n}{T}_{z} \mathbf{k}
$$

$$
\begin{aligned}
& \stackrel{n}{T}_{x}=\sigma_{x} n_{x}+\tau_{y x} n_{y}+\tau_{z x} n_{z} \\
& \stackrel{n}{T}_{y}=\tau_{x y} n_{x}+\sigma_{y} n_{y}+\tau_{z y} n_{z}
\end{aligned}
$$

$$
\stackrel{n}{T}_{z}=\tau_{x z} n_{x}+\tau_{y z} n_{y}+\sigma_{z} n_{z}
$$

Stress Vector on X-plane

Hence, the stress vector on a plane perpendicular to X -axis (Conveniently referred as X-plane), having direction cosines I_{x}, I_{y} and I_{z} is given by,

$$
\stackrel{X}{\mathbf{T}}=\stackrel{X}{T}_{x} \mathbf{i}+\stackrel{X}{T}_{y} \mathbf{j}+\stackrel{X}{T}_{z} \mathbf{k}
$$

where,

$$
\begin{aligned}
& \frac{x}{T_{x}}=\sigma_{x} l_{x}+\tau_{y x} l_{y}+\tau_{z x} l_{z} \\
& \underline{x}_{y}=\tau_{x y} l_{x}+\sigma_{y} l_{y}+\tau_{z y} l_{z} \\
& \frac{x}{T_{z}}=\tau_{x z} l_{x}+\tau_{y z} l_{y}+\sigma_{z} l_{z}
\end{aligned}
$$

Stress component Normal to X-Plane

$$
\begin{aligned}
& \sigma_{X X}=\stackrel{X}{\mathrm{~T}} \bullet\left(I_{x} \mathbf{i}+I_{y} \mathbf{j}+I_{z} \mathbf{k}\right) \\
& \sigma_{X X}=\left(\stackrel{X}{T}_{x} \mathbf{i}+\stackrel{X}{T}_{y} \mathbf{j}+\stackrel{X}{T}_{z} \mathbf{k}\right) \bullet\left(I_{x} \mathbf{i}+I_{y} \mathbf{j}+I_{z} \mathbf{k}\right) \\
& \sigma_{X X}=\stackrel{X}{T}_{x} I_{x}+\stackrel{X}{T}_{y} l_{y}+\stackrel{X}{T}_{z} I_{z} \\
& \sigma_{x x}=\left(\sigma_{x} I_{x}+\tau_{y x} l_{y}+\tau_{z x} I_{z}\right) l_{x}+\left(\tau_{x y} I_{x}+\sigma_{y} l_{y}+\tau_{z y} l_{z}\right) l_{y} \\
& +\left(\tau_{x z} l_{x}+\tau_{y z} l_{y}+\sigma_{z} I_{z}\right) l_{z}
\end{aligned}
$$

After rearranging, we get

$$
\sigma_{x x}=I_{x}^{2} \sigma_{x}+I_{y}^{2} \sigma_{y}+I_{z}^{2} \sigma_{z}+2 I_{x} l_{y} \tau_{x y}+2 l_{y} I_{z} \tau_{y z}+2 I_{z} I_{x} \tau_{z x}
$$

Stress component Normal to Y and Z-Planes

For Y-Plane

$$
\begin{gathered}
\sigma_{Y Y}=\stackrel{Y}{\mathrm{~T}} \bullet\left(m_{x} \mathbf{i}+m_{y} \mathbf{j}+m_{z} \mathbf{k}\right) \\
\sigma_{Y Y}=\left(\stackrel{Y}{T}_{x} \mathbf{i}+\stackrel{Y}{T_{y}} \mathbf{j}+\stackrel{Y}{T_{z}} \mathbf{k}\right) \bullet\left(m_{x} \mathbf{i}+m_{y} \mathbf{j}+m_{z} \mathbf{k}\right) \\
\sigma_{Y Y}=m_{x}^{2} \sigma_{x}+m_{y}^{2} \sigma_{y}+m_{z}^{2} \sigma_{z}+2 m_{x} m_{y} \tau_{x y}+2 m_{y} m_{z} \tau_{y z}+2 m_{z} m_{x} \tau_{z x}
\end{gathered}
$$

For Z-Plane

$$
\begin{gathered}
\sigma_{z z}=\stackrel{Z}{\mathrm{~T}} \bullet\left(n_{x} \mathbf{i}+n_{y} \mathbf{j}+n_{z} \mathbf{k}\right) \\
\sigma_{z z}=\left(\stackrel{Z}{T}_{x} \mathbf{i}+\stackrel{Z}{T_{y}} \mathbf{j}+\stackrel{Z}{T_{z}} \mathbf{k}\right) \bullet\left(n_{x} \mathbf{i}+n_{y} \mathbf{j}+n_{z} \mathbf{k}\right) \\
\sigma_{z z}=n_{x}^{2} \sigma_{x}+n_{y}^{2} \sigma_{y}+n_{z}^{2} \sigma_{z}+2 n_{x} n_{y} \tau_{x y}+2 n_{y} n_{z} \tau_{y z}+2 n_{z} n_{x} \tau_{z x}
\end{gathered}
$$

Shear Stress Components on X-Plane

The shear stress component $\tau_{X Y}$ is the component of the stress vector on a plane perpendicular to the X axis in the Y direction

$$
\begin{gathered}
\tau_{X Y}=\stackrel{X}{\mathbf{T}} \bullet\left(m_{x} \mathbf{i}+m_{y} \mathbf{j}+m_{z} \mathbf{k}\right) \\
\tau_{X Y}=\stackrel{x}{T}_{x} m_{x}+\stackrel{x}{T_{y}} m_{y}+{\stackrel{x}{T_{z}} m_{z}}^{\tau_{X Y}=\left(\sigma_{x} l_{x}+\tau_{y x} l_{y}+\tau_{z x} l_{z}\right) m_{x}+\left(\tau_{x y} l_{x}+\sigma_{y} l_{y}+\tau_{z y} l_{z}\right) m_{y}} \begin{array}{r}
+\left(\tau_{x z} l_{x}+\tau_{y z} l_{y}+\sigma_{z} l_{z}\right) m_{z} \\
\tau_{X Y}=I_{x} m_{x} \sigma_{x}+l_{y} m_{y} \sigma_{y}+l_{z} m_{z} \sigma_{z}+\left(l_{x} m_{y}+l_{y} m_{x}\right) \tau_{x y}+\left(l_{y} m_{z}+l_{z} m_{y}\right) \tau_{y z} \\
\\
+\left(l_{z} m_{x}+l_{x} m_{z}\right) \tau_{z x}
\end{array}
\end{gathered}
$$

Shear Stress Components

$$
\begin{array}{r}
\tau_{Y Z}=m_{x} n_{x} \sigma_{x}+m_{y} n_{y} \sigma_{y}+m_{z} n_{z} \sigma_{z}+\left(m_{x} n_{y}+m_{y} n_{x}\right) \tau_{x y} \\
+\left(m_{y} n_{z}+m_{z} n_{y}\right) \tau_{y z}+\left(m_{z} n_{x}+m_{x} n_{z}\right) \tau_{z x} \\
\tau_{Z X}=n_{x} l_{x} \sigma_{x}+n_{y} l_{y} \sigma_{y}+n_{z} l_{z} \sigma_{z}+\left(n_{x} l_{y}+n_{y} l_{x}\right) \tau_{x y}+\left(n_{y} l_{z}+n_{z} l_{y}\right) \tau_{y z} \\
+\left(n_{z} l_{x}+n_{x} l_{z}\right) \tau_{z x}
\end{array}
$$

Transformation Equation in Matrix Form

Written in matrix form, the transformation equation is :

$$
[\sigma]_{X Y Z}=[T][\sigma]_{x y z}[T]^{T}
$$

where, $[T]$ is the transformation matrix and $[T]^{T}$ is the transpose of the transformation matrix given by:

$$
[T]=\left[\begin{array}{ccc}
l_{x} & l_{y} & l_{z} \\
m_{x} & m_{y} & m_{z} \\
n_{x} & n_{y} & n_{z}
\end{array}\right]
$$

and

$$
[T]^{T}=\left[\begin{array}{lll}
l_{x} & m_{x} & n_{x} \\
l_{y} & m_{y} & n_{y} \\
l_{z} & m_{z} & n_{z}
\end{array}\right]
$$

Transformation Equation in Matrix Form

The transformation equation is :

$$
[\sigma]_{X Y Z}=[T][\sigma]_{x y z}[T]^{T}
$$

$$
\left[\begin{array}{ccc}
\sigma_{X} & \tau_{X Y} & \tau_{X Z} \\
\tau_{Y X} & \sigma_{Y} & \tau_{Y Z} \\
\tau_{Z X} & \tau_{Z Y} & \sigma_{Z}
\end{array}\right]=\left[\begin{array}{ccc}
I_{x} & l_{y} & I_{z} \\
m_{x} & m_{y} & m_{z} \\
n_{x} & n_{y} & n_{z}
\end{array}\right]\left[\begin{array}{ccc}
\sigma_{x} & \tau_{x y} & \tau_{x z} \\
\tau_{y x} & \sigma_{y} & \tau_{y z} \\
\tau_{z x} & \tau_{z y} & \sigma_{z}
\end{array}\right]\left[\begin{array}{ccc}
l_{x} & m_{x} & n_{x} \\
l_{y} & m_{y} & n_{y} \\
l_{z} & m_{z} & n_{z}
\end{array}\right]
$$

Example of transformation in $x-y$ plane.

Figure: Transformation in $x-y$ plane

The z and z^{\prime} axes are same and $\theta_{x^{\prime} x}=\theta, \theta_{x^{\prime} y}=90-\theta, \theta_{x^{\prime} z}=90$;
$\theta_{y^{\prime} x}=90+\theta, \theta_{y^{\prime} y}=\theta, \theta_{y^{\prime} z}=90 ; \theta_{z^{\prime} x}=90, \theta_{z^{\prime} y}=90, \theta_{z^{\prime} z}=0$;

Example of transformation in $x-y$ plane.

Transformation matrix for this case can be obtained as:

$$
[T]=\left[\begin{array}{ccc}
\cos \theta & \cos (90-\theta) & \cos 90 \\
\cos (90+\theta) & \cos \theta & \cos 90 \\
\cos 90 & \cos 90 & \cos 0
\end{array}\right]=\left[\begin{array}{ccc}
\cos \theta & \sin \theta & 0 \\
-\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]
$$

The matrix obtained above is applicable for transformation from Cartesian to polar coordinates.

$$
\left.\begin{array}{rl}
{\left[\begin{array}{ccc}
\sigma_{r} & \tau_{r \theta} & \tau_{r z} \\
\tau_{\theta r} & \sigma_{\theta} & \tau_{\theta z} \\
\tau_{z r} & \tau_{z \theta} & \sigma_{z}
\end{array}\right]=} & {\left[\begin{array}{ccc}
\cos \theta & \sin \theta & 0 \\
-\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]}
\end{array} \begin{array}{ccc}
\sigma_{x} & \tau_{x y} & \tau_{x z} \\
\tau_{y x} & \sigma_{y} & \tau_{y z} \\
\tau_{z x} & \tau_{z y} & \sigma_{z}
\end{array}\right], ~\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right], ~\left[\begin{array}{ll}
&
\end{array}\right.
$$

Example-1

The resisting traction vectors on the Cartesian coordinate planes passing through a point are,

$$
\stackrel{\mathbf{i}}{\mathbf{T}}=3 \mathbf{i}+2 \mathbf{j}-2 \mathbf{k} ; \quad \dot{\mathbf{j}}=2 \mathbf{i}-\mathbf{k} ; \quad \stackrel{\mathbf{k}}{\mathbf{T}}=-2 \mathbf{i}-\mathbf{j}+2 \mathbf{k}
$$

The unit of the traction is kPa . Then,
(a) write down the matrix of stress tensor in the Cartesian coordinate system, (b) evaluate the matrix of a new coordinate system obtained by rotating the Cartesian coordinate system through an angle 30° in the anti-clockwise direction.

Example-1

Solution:

The matrix of the stress tensor is obtained by writing the given traction vectors in the rows of the matrix as

$$
\left[\sigma_{i j}\right]=\left[\begin{array}{ccc}
3 & 2 & -2 \\
2 & 0 & -1 \\
-2 & -1 & 2
\end{array}\right]
$$

The transformation matrix

$$
\begin{array}{r}
{[T]=\left[\begin{array}{ccc}
\cos \theta & \sin \theta & 0 \\
-\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
\cos 30 & \sin 30 & 0 \\
-\sin 30 & \cos 30 & 0 \\
0 & 0 & 1
\end{array}\right]} \\
\\
=\left[\begin{array}{ccc}
0.866 & 0.500 & 0 \\
-0.500 & 0.866 & 0 \\
0 & 0 & 1
\end{array}\right]
\end{array}
$$

Example-1

Solution:

Stress tensor for the new coordinate system is given by

$$
\begin{gathered}
{\left[\sigma_{i j}\right]_{\text {new }}=[T]\left[\sigma_{i j}\right][T]^{T}} \\
{\left[\sigma_{i j}\right]_{\text {new }}=\left[\begin{array}{ccc}
0.866 & 0.500 & 0 \\
-0.500 & 0.866 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
3 & 2 & -2 \\
2 & 0 & -1 \\
-2 & -1 & 2
\end{array}\right]\left[\begin{array}{ccc}
0.866 & -0.500 & 0 \\
0.500 & 0.866 & 0 \\
0 & 0 & 1
\end{array}\right]} \\
\\
=\left[\begin{array}{ccc}
3.982 & -0.299 & -2.232 \\
-0.299 & -0.982 & 0.134 \\
-2.232 & 0.134 & 2
\end{array}\right]
\end{gathered}
$$

Principal Stresses and Principal planes

From the failure considerations of materials, following questions are important.

1. Are there any planes passing through the given point on which the resultant stresses are wholly normal (in other words, the resultant stress vector is along the normal)?
2. What is the plane on which the normal stress is a maximum and what is its magnitude?
3. What is the plane on which the tangential or shear stress is a maximum and what it is its magnitude?

Principal Stresses and Principal planes

Assume there is a plane \mathbf{n} with direction cosines n_{x}, n_{y} and n_{z} on which the stress is fully normal.
Let σ be the magnitude of stress vector Then, we have

$$
\begin{aligned}
\stackrel{n}{\mathbf{T}} & =\sigma \mathbf{n} \\
\stackrel{n}{T}_{x}=\sigma n_{x}, \stackrel{n}{T}_{y} & =\sigma n_{y}, \stackrel{n}{T}_{z}=\sigma n_{z}
\end{aligned}
$$

Using Cauchy's formula,

$$
\begin{aligned}
& \sigma_{x} n_{x}+\tau_{y x} n_{y}+\tau_{z x} n_{z}=\sigma n_{x} \\
& \tau_{x y} n_{x}+\sigma_{y} n_{y}+\tau_{z y} n_{z}=\sigma n_{y} \\
& \tau_{x z} n_{x}+\tau_{y z} n_{y}+\sigma_{z} n_{z}=\sigma n_{z}
\end{aligned}
$$

Principal Stresses and Principal planes

$$
\begin{aligned}
& \left(\sigma_{x}-\sigma\right) n_{x}+\tau_{y x} n_{y}+\tau_{z x} n_{z}=0 \\
& \tau_{x y} n_{x}+\left(\sigma_{y}-\sigma\right) n_{y}+\tau_{z y} n_{z}=0 \\
& \tau_{x z} n_{x}+\tau_{y z} n_{y}+\left(\sigma_{z}-\sigma\right) n_{z}=0
\end{aligned}
$$

The above equations constitute a system of linear homogeneous simultaneous equations.
In order to have a non-trivial solution,(other than
$n_{x}=n_{y}=n_{z}=0$)

$$
\left|\begin{array}{ccc}
\left(\sigma_{x}-\sigma\right) & \tau_{y x} & \tau_{z x} \\
\tau_{x y} & \left(\sigma_{y}-\sigma\right) & \tau_{z y} \\
\tau_{x z} & \tau_{y z} & \left(\sigma_{z}-\sigma\right)
\end{array}\right|=0
$$

Principal Stresses and Principal planes

On expanding the Determinant, we get a cubic equation in σ as

$$
\begin{aligned}
\sigma^{3}- & \left(\sigma_{x}+\sigma_{y}+\sigma_{z}\right) \sigma^{2} \\
& +\left(\sigma_{x} \sigma_{y}+\sigma_{y} \sigma_{z}+\sigma_{z} \sigma_{x}-\tau_{x y}^{2}-\tau_{y z}^{2}-\tau_{z x}^{2}\right) \sigma \\
- & \left(\sigma_{x} \sigma_{y} \sigma_{z}-\sigma_{x} \tau_{y z}^{2}-\sigma_{y} \tau_{z x}^{2}-\sigma_{z} \tau_{x y}^{2}+2 \tau_{x y} \tau_{y z} \tau_{z x}\right)=0
\end{aligned}
$$

Or

$$
\sigma^{3}-I_{1} \sigma^{2}+I_{2} \sigma-I_{3}=0
$$

Where,
$\boldsymbol{I}_{1}=\left(\sigma_{x}+\sigma_{y}+\sigma_{z}\right), \iota_{2}=\left(\sigma_{x} \sigma_{y}+\sigma_{y} \sigma_{z}+\sigma_{z} \sigma_{x}-\tau_{x y}{ }^{2}-\tau_{y z}{ }^{2}-\tau_{z x}{ }^{2}\right)$,
$I_{3}=\left(\sigma_{x} \sigma_{y} \sigma_{z}-\sigma_{x} \tau_{y z}{ }^{2}-\sigma_{y} \tau_{z x}{ }^{2}-\sigma_{z} \tau_{x y}{ }^{2}+2 \tau_{x y} \tau_{y z} \tau_{z x}\right)$ are called
Stress Invariants as their values don't change during a co-ordinate transformation.

Principal Stresses and Principal planes

Stress invariants can be calculated by

$$
\begin{gathered}
I_{1}=\left(\sigma_{x}+\sigma_{y}+\sigma_{z}\right) \\
I_{2}=\left|\begin{array}{cc}
\sigma_{x} & \tau_{x y} \\
\tau_{x y} & \sigma_{y}
\end{array}\right|+\left|\begin{array}{cc}
\sigma_{y} & \tau_{y z} \\
\tau_{y z} & \sigma_{z}
\end{array}\right|+\left|\begin{array}{cc}
\sigma_{x} & \tau_{x z} \\
\tau_{x z} & \sigma_{z}
\end{array}\right| \\
I_{3}=\left|\begin{array}{ccc}
\sigma_{x} & \tau_{x y} & \tau_{x z} \\
\tau_{x y} & \sigma_{y} & \tau_{y z} \\
\tau_{x z} & \tau_{y z} & \sigma_{z}
\end{array}\right|
\end{gathered}
$$

Principal Stresses and Principal planes

- The cubic equation $\sigma^{3}-I_{1} \sigma^{2}+I_{2} \sigma-I_{3}=0$ has 3 real roots
- Each of this roots can be substituted to

$$
\begin{aligned}
& \left(\sigma_{x}-\sigma\right) n_{x}+\tau_{y x} n_{y}+\tau_{z x} n_{z}=0 \\
& \tau_{x y} n_{x}+\left(\sigma_{y}-\sigma\right) n_{y}+\tau_{z y} n_{z}=0 \\
& \tau_{x z} n_{x}+\tau_{y z} n_{y}+\left(\sigma_{z}-\sigma\right) n_{z}=0
\end{aligned}
$$

to get corresponding values of n_{x}, n_{y} and n_{z}

- In order to avoid trivial solution, the condition $n_{x}^{2}+n_{y}^{2}+n_{z}^{2}=1$ is used with any two of the above equations to obtain n_{x}, n_{y} and n_{z}

Stress Invariants

For any arbitrary co-ordinate system $O_{x y z}$

- $l_{1}=\left(\sigma_{x}+\sigma_{y}+\sigma_{z}\right)$,
- $I_{2}=\left(\sigma_{x} \sigma_{y}+\sigma_{y} \sigma_{z}+\sigma_{z} \sigma_{x}-\tau_{x y}{ }^{2}-\tau_{y z}{ }^{2}-\tau_{z x}{ }^{2}\right)$
- $I_{3}=\left(\sigma_{x} \sigma_{y} \sigma_{z}-\sigma_{x} \tau_{y z}{ }^{2}-\sigma_{y} \tau_{z x}{ }^{2}-\sigma_{z} \tau_{x y}{ }^{2}+2 \tau_{x y} \tau_{y z} \tau_{z x}\right)$

For a coordinate system coinciding with principal axes

- $\boldsymbol{I}_{1}=\left(\sigma_{1}+\sigma_{2}+\sigma_{3}\right)$,
- $I_{2}=\left(\sigma_{1} \sigma_{2}+\sigma_{2} \sigma_{3}+\sigma_{3} \sigma_{1}\right)$
- $I_{3}=\left(\sigma_{1} \sigma_{2} \sigma_{3}\right)$

Notes on Principal Planes

1. Principal planes are planes on which the resultant stress is normal.
2. The shear stress on a principal plane is zero.
3. Principal planes are planes on which the normal stress has an extreme value.
4. One principal plane is subjected to maximum value of principal stress. This plane is called major principal plane.
5. One principal plane is subjected to minimum value of principal stress. This plane is called minor principal plane.
6. There is a plane, which is a subjected to an intermediate stress.
7. There are three principal planes. These planes are mutually perpendicular to each other.
8. The principal planes can be form a set of three mutually perpendicular planes for writing the stress tensor.

Principal Stresses and Principal planes-Example-1

At a point P, the rectangular stress components are

$$
\tau_{i j}=\left[\begin{array}{ccc}
1 & 2 & 1 \\
2 & -2 & -3 \\
1 & -3 & 4
\end{array}\right]
$$

all in units of kPa . Find the principal stresses and check for invariance.

Principal Stresses and Principal planes-Example-1

Solution:

To obtain the cubic equation

$$
\begin{gathered}
\left|\begin{array}{ccc}
1-\sigma & 2 & 1 \\
2 & -2-\sigma & -3 \\
1 & -3 & 4-\sigma
\end{array}\right|=0 \\
(1-\sigma)[-(2+\sigma)(4-\sigma)-9]-2[2(4-\sigma)+3]+1[-6+(2+\sigma)]=0 \\
(1-\sigma)\left[\sigma^{2}-2 \sigma-17\right]-2[11-2 \sigma]+1[\sigma-4]=0 \\
\sigma^{2}-2 \sigma-17-\sigma^{3}+2 \sigma^{2}+17 \sigma-22+4 \sigma+\sigma-4=0 \\
\sigma^{3}-3 \sigma^{2}-20 \sigma+43=0
\end{gathered}
$$

Principal Stresses and Principal planes-Example-1

Alternatively,

$$
\begin{gathered}
I_{1}=\left(\sigma_{x}+\sigma_{y}+\sigma_{z}\right)=3 \\
I_{2}=\left(\sigma_{x} \sigma_{y}+\sigma_{y} \sigma_{z}+\sigma_{z} \sigma_{x}-\tau_{x y}{ }^{2}-\tau_{y z}{ }^{2}-\tau_{z x}{ }^{2}\right)=-2-8+4-4-9-1=-20 \\
I_{3}=\left(\sigma_{x} \sigma_{y} \sigma_{z}-\sigma_{x} \tau_{y z}{ }^{2}-\sigma_{y} \tau_{z x}{ }^{2}-\sigma_{z} \tau_{x y}{ }^{2}+2 \tau_{x y} \tau_{y z} \tau_{z x}\right) \\
=-8-9+2-16-12=-43
\end{gathered}
$$

Hence, the cubic equation $\left(\sigma^{3}-I_{1} \sigma^{2}+I_{2} \sigma-I_{3}=0\right)$ is

$$
\sigma^{3}-3 \sigma^{2}-20 \sigma+43=0
$$

Principal Stresses and Principal planes-Example-1

The solutions of $\left(\sigma^{3}-3 \sigma^{2}-20 \sigma+43=0\right)$ are,

$$
\begin{aligned}
\sigma_{1} & =5.25 \mathrm{kPa} \\
\sigma_{2} & =1.95 \mathrm{kPa} \\
\sigma_{3} & =-4.2 \mathrm{kPa}
\end{aligned}
$$

The stress invariants are,

$$
\begin{gathered}
I_{1}=5.25+1.95-4.2=3 \\
I_{2}=(5.25 \times 1.95)+(1.95 \times-4.2)+(-4.2 \times 5.25)=-20 \\
I_{3}=-(5.25 \times 1.95 \times 4.2)=-43
\end{gathered}
$$

These agree with their earlier values

Principal Stresses and Principal planes-Example-2

With respect to the frame of reference $O_{x y z}$, the following state of stress exists. Determine the principal stresses and their associated directions.

$$
\tau_{i j}=\left[\begin{array}{lll}
1 & 2 & 1 \\
2 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]
$$

Principal Stresses and Principal planes-Example-2

Solution:

$$
\begin{gathered}
I_{1}=\left(\sigma_{x}+\sigma_{y}+\sigma_{z}\right)=1+1+1=3 \\
I_{2}=\left(\sigma_{x} \sigma_{y}+\sigma_{y} \sigma_{z}+\sigma_{z} \sigma_{x}-\tau_{x y}^{2}-\tau_{y z}^{2}-\tau_{z x}^{2}\right)=1+1+1-4-1-1=-3 \\
I_{3}=\left(\sigma_{x} \sigma_{y} \sigma_{z}-\sigma_{x} \tau_{y z}^{2}-\sigma_{y} \tau_{z x}^{2}-\sigma_{z} \tau_{x y}^{2}+2 \tau_{x y} \tau_{y z} \tau_{z x}\right) \\
=1-1-1-4+4=-1
\end{gathered}
$$

Hence, the cubic equation $\left(\sigma^{3}-I_{1} \sigma^{2}+I_{2} \sigma-I_{3}=0\right)$ is

$$
\sigma^{3}-3 \sigma^{2}-3 \sigma+1=0
$$

Principal Stresses and Principal planes-Example-2

The solutions of $\left(\sigma^{3}-3 \sigma^{2}-3 \sigma-1=0\right)$ are,

$$
\begin{gathered}
\sigma_{1}=-1 \\
\sigma_{2}=3.7321 \\
\sigma_{3}=0.2679
\end{gathered}
$$

Directions of principal axes:
For $\sigma_{1}=-1$,

$$
\begin{aligned}
& (1+1) n_{x}+2 n_{y}+1 n_{z}=0 \\
& 2 n_{x}+(1+1) n_{y}+1 n_{z}=0 \\
& 1 n_{x}+1 n_{y}+(1+1) n_{z}=0
\end{aligned}
$$

Principal Stresses and Principal planes-Example-2

$$
\left[\begin{array}{lll}
2 & 2 & 1 \\
2 & 2 & 1 \\
1 & 1 & 2
\end{array}\right]\left[\begin{array}{l}
n_{x} \\
n_{y} \\
n_{z}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Let A_{1}, B_{1}, C_{1} respectively be the cofactors of the elements of first raw of the tensor

$$
\left[\begin{array}{lll}
2 & 2 & 1 \\
2 & 2 & 1 \\
1 & 1 & 2
\end{array}\right]
$$

Hence,

$$
A_{1}=(-1)^{2}\left|\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right|=2 \times 2-1 \times 1=3
$$

Similarly, $B_{1}=-1(4-1)=-3$ and $C_{1}=2-2=0$

Principal Stresses and Principal planes-Example-2

Direction cosines of can be obtained by,

$$
\begin{aligned}
& n_{x}=\frac{A_{1}}{\sqrt{A_{1}^{2}+B_{1}^{2}+C_{1}^{2}}}=\frac{3}{\sqrt{3^{2}+(-3)^{2}+0^{2}}}=0.7071 \\
& n_{y}=\frac{-3}{\sqrt{3^{2}+(-3)^{2}+0^{2}}}=-0.7071 \\
& n_{z}=0
\end{aligned}
$$

Principal Stresses and Principal planes-Example-2

For $\sigma_{2}=3.7321$,

$$
\left[\begin{array}{ccc}
-2.7321 & 2 & 1 \\
2 & -2.7321 & 1 \\
1 & 1 & -2.7321
\end{array}\right]\left[\begin{array}{l}
n_{x} \\
n_{y} \\
n_{z}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Let A_{1}, B_{1}, C_{1} respectively are obtained as
$A_{1}=6.464, B_{1}=6.464, C_{1}=4.732$

$$
\begin{aligned}
& n_{x}=\frac{6.4641}{10.294}=0.6280 \\
& n_{y}=\frac{6.4641}{10.294}=0.6280 \\
& n_{z}=\frac{4.7320}{10.294}=0.4597
\end{aligned}
$$

Principal Stresses and Principal planes-Example-2

For $\sigma_{3}=0.2679$,

$$
\left[\begin{array}{ccc}
0.7320 & 2 & 1 \\
2 & 0.7320 & 1 \\
1 & 1 & 0.7320
\end{array}\right]\left[\begin{array}{l}
n_{x} \\
n_{y} \\
n_{z}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Let A_{1}, B_{1}, C_{1} respectively are obtained as $A_{1}=-0.4641, B_{1}=-0.4641, C_{1}=1.2679$

$$
\begin{gathered}
n_{x}=\frac{-0.4641}{1.4279}=-0.3251 \\
n_{y}=\frac{-0.4641}{1.4279}=-0.3251 \\
n_{z}=\frac{1.2679}{1.4279}=0.8881
\end{gathered}
$$

Octahedral Stresses

Figure: Octahedral planes

- A plane that is equally inclined to all the three principal axes is called an octahedral plane.
- Octahedral plane will have $n_{x}=n_{y}=n_{z}= \pm \frac{1}{\sqrt{3}}$
- There are eight such Octahedral planes
- The normal and shearing stresses on these planes are called the octahedral normal stress and octahedral shearing stress respectively.

Octahedral Stresses

- Octahedral Stresses in terms of Principal Stresses/Stress invariants

$$
\sigma_{o c t}=\frac{1}{3}\left(\sigma_{1}+\sigma_{2}+\sigma_{3}\right)=\frac{1}{3} I_{1}
$$

$$
\tau_{o c t}^{2}=\frac{1}{3}\left[\left(\sigma_{1}-\sigma_{2}\right)^{2}+\left(\sigma_{2}-\sigma_{3}\right)^{2}+\left(\sigma_{3}-\sigma_{1}\right)^{2}\right]=\frac{2}{9}\left(I_{1}^{2}-3 I_{2}\right)
$$

- Octahedral Stresses in terms of $\sigma_{x}, \tau x y, \cdots$ etc are

$$
\begin{gathered}
\sigma_{o c t}=\frac{1}{3}\left(\sigma_{x}+\sigma_{y}+\sigma_{z}\right) \\
\tau_{o c t}^{2}=\frac{1}{3}\left[\left(\sigma_{x}-\sigma_{y}\right)^{2}+\left(\sigma_{y}-\sigma_{z}\right)^{2}+\left(\sigma_{z}-\sigma_{x}\right)^{2}+6\left(\tau_{x y}^{2}+\tau_{y z}^{2}+\tau_{z x}^{2}\right)\right]
\end{gathered}
$$

Hydrostatic and Deviatoric Stress Components

Any arbitrary state of stress can be resolved into a hydrostatic state and a state of pure shear.

$$
\begin{aligned}
{\left[\begin{array}{ccc}
\sigma_{x} & \tau_{x y} & \tau_{x z} \\
\tau_{y x} & \sigma_{y} & \tau_{y z} \\
\tau_{z x} & \tau_{z y} & \sigma_{z}
\end{array}\right]=} & {\left[\begin{array}{ccc}
\sigma_{H y d} & 0 & 0 \\
0 & \sigma_{H y d} & 0 \\
0 & 0 & \sigma_{H y d}
\end{array}\right] } \\
& +\left[\begin{array}{ccc}
\sigma_{x}-\sigma_{H y d} & \tau_{x y} & \tau_{x z} \\
\tau_{y x} & \sigma_{y}-\sigma_{H y d} & \tau_{y z} \\
\tau_{z x} & \tau_{z y} & \sigma_{z}-\sigma_{H y d}
\end{array}\right]
\end{aligned}
$$

Hydrostatic Stress

- Hydrostatic stress is simply the average of the three normal stress components of any stress tensor.

$$
\sigma_{\mathrm{Hyd}}=\frac{\sigma_{x}+\sigma_{y}+\sigma_{z}}{3}
$$

- It is a scalar quantity, although it is regularly used in tensor form as

$$
\sigma_{\mathrm{Hyd}}=\left[\begin{array}{ccc}
\sigma_{H y d} & 0 & 0 \\
0 & \sigma_{H y d} & 0 \\
0 & 0 & \sigma_{H y d}
\end{array}\right]
$$

- Hydrostatic stresses, being a function of I_{1} (First Invariant), do not change under coordinate transformations.

Deviatoric Stress

- Deviatoric stress is what's left after subtracting out the hydrostatic stress. The deviatoric stress will be represented by σ^{\prime}

$$
\sigma^{\prime}=\sigma-\sigma_{\mathrm{Hyd}}
$$

- In Tensor notation

$$
\begin{aligned}
\boldsymbol{\sigma}^{\prime} & =\left[\begin{array}{ccc}
\sigma_{x} & \tau_{x y} & \tau_{x z} \\
\tau_{y x} & \sigma_{y} & \tau_{y z} \\
\tau_{z x} & \tau_{z y} & \sigma_{z}
\end{array}\right]-\left[\begin{array}{ccc}
\sigma_{H y d} & 0 & 0 \\
0 & \sigma_{H y d} & 0 \\
0 & 0 & \sigma_{H y d}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
\sigma_{x}-\sigma_{H y d} & \tau_{x y} & \tau_{x z} \\
\tau_{y x} & \sigma_{y}-\sigma_{H y d} & \tau_{y z} \\
\tau_{z x} & \tau_{z y} & \sigma_{z}-\sigma_{H y d}
\end{array}\right]
\end{aligned}
$$

Equations of Equilibrium

- The state of stress in a body varies from point to point.
- Equations of Equilibrium are the conditions to be satisfied by stress components when the body is in equilibrium.
- These equations are needed when the theory of elasticity is used to derive load-stress and load-deflection relations for a body.

Equations of Equilibrium

Figure: Isolated cubical element

Equations of Equilibrium

Figure: Variation of stresses

- Face-1: $\sigma_{x}, \tau_{x y}, \tau_{x z}$
- Face-2: $\sigma_{x}+\frac{\partial \sigma_{x}}{\partial x} \Delta x, \tau_{x y}+\frac{\partial \tau_{x y}}{\partial x} \Delta x$, $\tau_{x z}+\frac{\partial \tau_{x z}}{\partial x} \Delta x$,
- Face-3: $\sigma_{y}, \tau_{y x}, \tau_{y z}$
- Face-4: $\sigma_{y}+\frac{\partial \sigma_{y}}{\partial y} \Delta y$, $\tau_{y x}+\frac{\partial \tau_{y x}}{\partial y} \Delta y, \tau_{y z}+\frac{\partial \tau_{y z}}{\partial y} \Delta y$
- Face-5: $\sigma_{z}, \tau_{z x}, \tau_{z y}$
- Face-6: $\sigma_{z}+\frac{\partial \sigma_{z}}{\partial z} \Delta z, \tau_{z x}+\frac{\partial \tau_{z x}}{\partial z} \Delta z$, $\tau_{z y}+\frac{\partial \tau_{z y}}{\partial z} \Delta z$
- Body force components per unit volume are $\gamma_{x}, \gamma_{y}, \gamma_{z}$

Equations of Equilibrium

For equilibrium in x-direction,

$$
\begin{aligned}
\left(\sigma_{x}+\right. & \left.\frac{\partial \sigma_{x}}{\partial x} \Delta x\right) \Delta y \Delta z-\sigma_{x} \Delta y \Delta z+\left(\tau_{y x}+\frac{\partial \tau_{y x}}{\partial y} \Delta y\right) \Delta x \Delta z-\tau_{y x} \Delta x \Delta z \\
& +\left(\tau_{z x}+\frac{\partial \tau_{z x}}{\partial z} \Delta z\right) \Delta x \Delta y-\tau_{z x} \Delta x \Delta y+\gamma_{x} \Delta x \Delta y \Delta z=0
\end{aligned}
$$

Cancelling terms, dividing by $\Delta x, \Delta y, \Delta z$ and going to the limit, we get

$$
\frac{\partial \sigma_{x}}{\partial x}+\frac{\partial \tau_{y x}}{\partial y}+\frac{\partial \tau_{z x}}{\partial z}+\gamma_{x}=0
$$

Similarly, equating forces in the y and z directions respectively to zero, we get two more equations.

Equations of Equilibrium

On the basis of the fact that the cross shears are equal, we obtain the three differential equations of equilibrium as

$$
\begin{aligned}
& \frac{\partial \sigma_{x}}{\partial x}+\frac{\partial \tau_{x y}}{\partial y}+\frac{\partial \tau_{x z}}{\partial z}+\gamma_{x}=0 \\
& \frac{\partial \tau_{x y}}{\partial x}+\frac{\partial \sigma_{y}}{\partial y}+\frac{\partial \tau_{y z}}{\partial z}+\gamma_{y}=0 \\
& \frac{\partial \tau_{x z}}{\partial x}+\frac{\partial \tau_{y z}}{\partial y}+\frac{\partial \sigma_{z}}{\partial z}+\gamma_{z}=0
\end{aligned}
$$

