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Displacement Field

Figure: Solid body under external
forces

I Displacement Field is used
for mathematical description
of shape change in solids.

I Figure represents a solid
body under the action of
external forces.

I Every point within the body
moves as the load is applied.
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Displacement Field

Figure: Solid body after deformation

I Due to deformation the point P is
displaced to P ′,the vector segment
PP’ is called the displacement
vector and is denoted by u

I For 2D
u = ux i + uy j
Where ux = ux(x , y) and
uy = uy (x , y)

I Similarly for 3D
u = ux i + uy j + uzk
ux = ux(x , y , z), uy = uy (x , y , z)
and uz = uz(x , y , z)
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Displacement Field: Example

The displacement field for a body is given by
u = (x2 + y)i + (3 + z)j + (x2 + 2y)k. What is the deformed
position of a point originally at (3, 1, –2)?

Solution:
Displacement vector u at (3,1,-2)is,
u = (32 + 1)i + (3− 2)j + (32 + 2)k
i .e.u = 10i + j + 11k
The initial position vector of the point, r = 3i + j − 2k
Position vector of the point after deformation,
r’ = r + u = 13i + 2j + 9k
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Displacement Field: Example
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Strains at A Point

Figure: Deformation of a rectangular
element

AA1 = A2A
′ = ux

BB1 = ux +
∂ux
∂x

∆x

AA2 = A1A
′ = uy

DD1 = uy +
∂uy
∂y

∆y

B1B
′ = uy +

∂uy
∂x

∆x

D1D
′ = ux +

∂ux
∂y

∆y
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Normal Strain εx

Figure: Deformation of a rectangular
element

εxx or εx = lim
∆x→0

A′B ′ − AB

AB

≈ lim∆x→0
A′B2 − AB

AB

= lim∆x→0
AB + BB1 − AA1 − AB

AB

= lim∆x→0
BB1 − AA1

AB

= lim∆x→0

ux +
∂ux
∂x

∆x − ux

∆x
=
∂ux
∂x

εx =
∂ux
∂x
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Normal Strain εy

Figure: Deformation of a rectangular
element

εyy or εy = lim
∆x→0

A′D ′ − AD

AD

≈ lim∆y→0
A′D2 − AD

AD

= lim∆y→0
AD + DD1 − AA2 − AD

AD

= lim∆y→0
DD1 − AA2

AD

= lim∆y→0

uy +
∂uy
∂y

∆y − uy

∆y
=
∂uy
∂y

εy =
∂uy
∂y
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Engineering Shear Strain γxy

Figure: Deformation of a
rectangular element

γxy or γyx = lim
∆x ,∆y→0

θ1 + θ2

≈ lim∆x ,∆y→0

(
B2B

′

A′B2
+

D2D
′

A′D2

)
= lim∆x ,∆y→0

(
∂uy
∂x

∆x

∆x+ ∂ux
∂x

∆x
+

∂ux
∂y

∆y

∆y+
∂uy
∂y

∆y

)
= lim∆x ,∆y→0

(
∂uy
∂x

1 + ∂ux
∂x

+

∂ux
∂y

1 +
∂uy
∂y

)
≈ lim∆x ,∆y→0

(
∂uy
∂x

+
∂ux
∂y

)
γxy = γyx =

(
∂uy
∂x

+
∂ux
∂y

)
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Rectangular Strain Components in 3-Dimensions

Linear or Normal Strains

εx =
∂ux
∂x

εy =
∂uy
∂y

εz =
∂uz
∂z

Engineering Shear Strains

γxy = γyx =

(
∂uy
∂x

+
∂ux
∂y

)

γyz = γzy =

(
∂uz
∂y

+
∂uy
∂z

)
γzx = γxz =

(
∂ux
∂z

+
∂uz
∂x

)
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Tensorial Strain Components

Strain Tensor  εx εxy εxz
εyx εy εyz
εzx εzy εz


Where,
εij are called Cauchy’s Shear Strain or Tensorial Shear Strain

εxy or εyx =
1
2
γxy =

1
2
γyx =

1
2

(
∂uy
∂x

+
∂ux
∂y

)
εyz or εzy =

1
2
γyz =

1
2
γzy =

1
2

(
∂uz
∂y

+
∂uy
∂z

)
εzx or εxz =

1
2
γzx =

1
2
γxz =

1
2

(
∂ux
∂z

+
∂uz
∂x

)
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Strain Tensor

Strain Tensor

[εij ] =

 εx εxy εxz
εyx εy εyz
εzx εzy εz

 =



εx
1
2
γxy

1
2
γxz

1
2
γyx εy

1
2
γyz

1
2
γzx

1
2
γzy εz


is a Tensor

Engineering Strain

 εx γxy γxz
γyx εy γyz
γzx γzy εz

 is not a Tensor
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Strain-Displacement Relationship - Excercises

Consider the displacement field [y2i + 3yz j + (4 + 6x2)k]10−2

What are the rectangular strain components at point P (1,0,2)?

Solution:
ux = y2, uy = 3yz and uz = (4 + 6x2)
Linear Strains:

εx =
∂ux
∂x

=
∂(y2)

∂x
10−2 = 0

εy =
∂uy
∂y

=
∂(3yz)

∂y
10−2 = 3z10−2 at P, εy = 6× 10−2

εz =
∂uz
∂z

=
∂(4 + 6x2)

∂y
10−2 = 0
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Strain-Displacement Relationship - Excercises

Consider the displacement field [y2i + 3yz j + (4 + 6x2)k]10−2

What are the rectangular strain components at point P (1,0,2)?
Solution:
ux = y2, uy = 3yz and uz = (4 + 6x2)
Linear Strains:

εx =
∂ux
∂x

=
∂(y2)

∂x
10−2 = 0

εy =
∂uy
∂y

=
∂(3yz)

∂y
10−2 = 3z10−2 at P, εy = 6× 10−2

εz =
∂uz
∂z

=
∂(4 + 6x2)

∂y
10−2 = 0

Advanced Mechanics of Solids ME202 Analysis of Strain



Displacement Field
Strain Displacement Relations

Engineering strain Components
Strain Tensor

Analogy between Stress and Strain Tensors
Compatibility Conditions

Strain-Displacement Relationship - Excercises

Shear Strains:

γxy =

(
∂uy
∂x

+
∂ux
∂y

)
= (0 + 2y) × 10−2

γxy at P, = 0

γyz =

(
∂uz
∂y

+
∂uy
∂z

)
= (0 + 3y) × 10−2

γyz at P, = 0

γzx =

(
∂ux
∂z

+
∂uz
∂x

)
= (0 + 12x) × 10−2

γzx at P, = 12× 10−2
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Analogy between Stress and Strain Tensors

I Diagonal elements of stress tensor represent normal stress.
Diagonal elements of strain tensor represent normal strain.

I Off-diagonal elements of the stress tensor represent the shear
stresses on planes parallel to coordinate planes. The
off-diagonal elements of the strain tensor are half of the shear
strains on planes parallel to coordinate planes.

I Both stress and strain tensors are symmetric
I The extreme values of normal stresses called the principal

stresses are the Eigen values of the stress tensor. The extreme
values of normal strains from a point are given by the Eigen
values of the strain tensor.
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I The planes of principal stresses (principal planes)are given by
Eigen vectors of stress tensor. Directions of principal
strains(principal directions) are the Eigen vectors of strain
tensor.

I The transformation rule is equally applicable for both stress
and strain tensors.

I Stress and strain tensors are related through a fourth order
tensor consisting of properties of material of the body
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Linear Strain a Point along a Given Direction

If the state of strain at a point P is defined by the strain tensor,

[εij ] =

 εx εxy εxz
εyx εy εyz
εzx εzy εz


The linear strain at the point P in the direction PQ with direction
cosines nx , ny , and nz , is given by,

εPQ = nx
2εx + ny

2εy + nz
2εz + 2nxny εxy + 2nynzεyz + 2nznxεzx
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Strain along a perticular Direction - Excercise

The following state of strain exists at a point P,

[εij ] =

 0.02 −0.04 0
−0.04 0.06 −0.02

0 −0.02 0


In the direction PQ having direction cosines nx = 0.6, ny = 0 and
nz = 0.8, determine εPQ

Solution:

εPQ = nx
2εx + ny

2εy + nz
2εz + 2nxny εxy + 2nynzεyz + 2nznxεzx

εPQ = 0.02(0.36)+0.06(0)+0(0.64)−0.04(0)−0.02(0)+0(0.96) = 0.007
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Principal Strains and Directions

A in the case of Principal Stresses, in order to obtain Principal
strains and directions, a system of linear homogeneous equations
can be formed.

(εx − ε)nx + εyxny + εzxnz = 0

εxynx + (εy − ε)ny + εzynz = 0

εxznx + εyzny + (εz − ε)nz = 0

Principal Strains are given by,∣∣∣∣∣∣
(εx − ε) εyx εzx
εxy (εy − ε) εzy
εxz εyz (εz − ε)

∣∣∣∣∣∣ = 0
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Principal Strains and Directions

On expanding the above determinant, we get,

ε3 − J1ε
2 + J2ε− J3 = 0

Where, J1, J2 and J3 are Strain Invariants

J1 = εx + εy + εz

J2 =

∣∣∣∣ εx εxy
εyx εy

∣∣∣∣+

∣∣∣∣ εy εzy
εyz εz

∣∣∣∣+

∣∣∣∣ εx εxz
εzx εz

∣∣∣∣
J3 =

∣∣∣∣∣∣
εx εxy εxz
εyx εy εyz
εzx εzy εz

∣∣∣∣∣∣
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Principal Strains and Directions

I The cubic equation ε3 − J1ε
2 + J2ε− J3 = 0 has 3 real roots

I Each of this roots can be substituted to

(εx − ε)nx + εyxny + εzxnz = 0

εxynx + (εy − ε)ny + εzynz = 0

εxznx + εyzny + (εz − ε)nz = 0

to get corresponding values ofnx , ny and nz
I In order to avoid trivial solution, the condition

nx
2 + ny

2 + nz
2 = 1 is used with any two of the above

equations to obtain nx , ny and nz
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Principal Strains and Directions - Excercise

The displacement field in micro units for a body is given by,

u = (x2 + y)i + (3 + z)j + (x2 + 2y)k

Determine the principal strains at (3, 1, –2) and the direction of
the minimum principal strain.
Solution :
The displacement components in micro units are, ux = (x2 + y),
uy = (3 + z) and uz = (x2 + 2y)

εx =
∂ux
∂x

= 2x , εy =
∂uy
∂y

= 0, εz =
∂uz
∂z

= 0
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Principal Strains and Directions - Excercise

εxy =
1
2

(
∂uy
∂x

+
∂ux
∂y

)
=

1
2

(0 + 1) =
1
2
,

εyz =
1
2

(
∂uz
∂y

+
∂uy
∂z

)
=

1
2

(2 + 1) =
3
2
,

εzx =
1
2

(
∂ux
∂z

+
∂uz
∂x

)
=

1
2

(0 + 2x) = x

At point (3, 1, –2) the strain components are therefore,
εx = 6, εy = 0, εz = 0

εxy =
1
2
, εyz =

3
2
, εzx = 3

Strain Invariants are, J1 = 6, J2 =
−23
2
, J3 = −9
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Principal Strains and Directions - Excercise

The Cubic equation is,

ε3 − 6ε2 − 23
2
ε+ 9 = 0

The roots of the above equation can be obtained as,
ε1 = +7.39, ε2 = −2, ε3 = +0.61
As a check, Invariants can be found out,
J1 = 6, J2 = −11.49, J3 = −9
The minimum principal strain is -2. For this, direction cosines are
nx = 0.267, ny = 0.534, nz = −0.8011

1Please refer the earlier exercise on principal stresses or textbook for details
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Compatibility Conditions

I The displacement of a point can be
represented by ux , uy , and uz along the
three axes x, y and z respectively.

I The deformation at a point is specified by
the six strain components εx , εy , εz , εxy ,
εyz and εzx

I Determination of strains from
displacements involves only differentiation

I Determination of three displacement
components from six strain components
needs Compatibility Conditions to be
satisfied by strain components

Figure: Deformations
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Compatibility Conditions

These equations describe the relations between the components of
strain and was put forward by St. Venant.
Consider the following relationships

εx =
∂ux
∂x

εy =
∂uy
∂y

εz =
∂uz
∂z

Differentiating the first relation twice with respect to y and second
with respect to x, we get

∂2εx
∂y2 =

∂3ux
∂y2∂x

=
∂2

∂x∂y

(
∂ux
∂y

)
(i)

∂2εy
∂x2 =

∂3uy
∂x2∂y

=
∂2

∂x∂y

(
∂uy
∂x

)
(ii)
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Compatibility Conditions

Adding (i) and (ii),
∂2εx
∂y2 +

∂2εy
∂x2 =

∂2

∂x∂y

(
∂ux
∂y

+
∂uy
∂x

)
∂2εx
∂y2 +

∂2εy
∂x2 =

∂2γxy
∂x∂y

Similarly, considering εy , εz & γyz and εz , εx & γzx two more
equations can be formed.

∂2εy
∂z2 +

∂2εz
∂y2 =

∂2γyz
∂y∂z

∂2εz
∂x2 +

∂2εx
∂z2 =

∂2γzx
∂z∂x
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Compatibility Conditions

Considering the following relationships,

γxy =

(
∂uy
∂x

+
∂ux
∂y

)
γyz =

(
∂uz
∂y

+
∂uy
∂z

)
γzx =

(
∂ux
∂z

+
∂uz
∂x

)
Differentiating the first one with respect to z, second one with
respect to x and last one with respect to y, we get

∂γxy
∂z

=

(
∂2uy
∂z∂x

+
∂2ux
∂z∂y

)
∂γyz
∂x

=

(
∂2uz
∂x∂y

+
∂uy
∂x∂z

)
∂γzx
∂y

=

(
∂2ux
∂y∂z

+
∂2uz
∂y∂x

)
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Compatibility Conditions

Adding the last two equations and subtracting the first equation we
get,

∂γyz
∂x

+
∂γzx
∂y

− ∂γxy
∂z

= 2
∂2uz
∂x∂y

Differentiating with respect to z,this becomes

∂

∂z

(
∂γyz
∂x

+
∂γzx
∂y

− ∂γxy
∂z

)
= 2

∂3uz
∂x∂y∂z

= 2
∂2εz
∂x∂y

Other equations can be obtained by cyclic change of subscripts.
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Compatibility Conditions

∂

∂z

(
∂γyz
∂x

+
∂γzx
∂y

− ∂γxy
∂z

)
= 2

∂2εz
∂x∂y

∂

∂x

(
∂γzx
∂y

+
∂γxy
∂z

− ∂γyz
∂x

)
= 2

∂2εx
∂y∂z

∂

∂y

(
∂γxy
∂z

+
∂γyz
∂x

− ∂γzx
∂y

)
= 2

∂2εy
∂z∂x

These equations are called Saint Venant’s equations of
compatibility.
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Compatibility Conditions-Excercises

Find the conditions needed to hold between the constants a1 to a6
so that the following is a possible strain field. εx = a1(x2 + y2);
εy = a2(y2 + z2); εz = a3(z2 + x2); γxy = a4xy ; γyz = a5yz ;
γzx = a6zx

Solution: From compatibility conditions,

∂2εx
∂y2 +

∂2εy
∂x2 =

∂2γxy
∂x∂y

2a1 + 0 = a4

2a1 = a4 (6.1)
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Compatibility Conditions-Excercises

Find the conditions needed to hold between the constants a1 to a6
so that the following is a possible strain field. εx = a1(x2 + y2);
εy = a2(y2 + z2); εz = a3(z2 + x2); γxy = a4xy ; γyz = a5yz ;
γzx = a6zx
Solution: From compatibility conditions,

∂2εx
∂y2 +

∂2εy
∂x2 =

∂2γxy
∂x∂y

2a1 + 0 = a4

2a1 = a4 (6.1)
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Similarly,
∂2εy
∂z2 +

∂2εz
∂y2 =

∂2γyz
∂x∂y

2a2 + 0 = a5

2a2 = a5 (6.2)

∂2εz
∂x2 +

∂2εx
∂z2 =

∂2γzx
∂x∂y

2a3 + 0 = a6

2a3 = a6 (6.3)
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∂

∂z

(
∂γyz
∂x

+
∂γzx
∂y

− ∂γxy
∂z

)
= 2

∂2εz
∂x∂y

∂

∂z
(0 + 0 + 0) = 0

This condition is identically satisfied.

∂

∂x

(
∂γzx
∂y

+
∂γxy
∂z

− ∂γyz
∂x

)
= 2

∂2εx
∂x∂y

∂

∂y

(
∂γxy
∂z

+
∂γyz
∂x

− ∂γzx
∂y

)
= 2

∂2εy
∂x∂y

These two conditions are also identically satisfied.
Hence, The conditions needed to be satisfied between constants a1
to a6 are,

2a1 = a4, 2a2 = a5 and 2a3 = a6
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