Analysis of Strain

Advanced Mechanics of Solids ME202

Arun Shal U B
Department of Mechanical Engineering College of Engineering Thalassery

January 22, 2018

Outline

Displacement Field

Strain Displacement Relations

Engineering strain Components
Strain Tensor
Analogy between Stress and Strain Tensors
Compatibility Conditions

Displacement Field

- Displacement Field is used for mathematical description of shape change in solids.
- Figure represents a solid body under the action of external forces.
- Every point within the body moves as the load is applied.

Figure: Solid body under external forces

Displacement Field

Figure: Solid body after deformation

- Due to deformation the point P is displaced to P^{\prime}, the vector segment PP' is called the displacement vector and is denoted by \mathbf{u}
- For 2D

$$
\mathbf{u}=u_{x} \mathbf{i}+u_{y} \mathbf{j}
$$

Where $u_{x}=u_{x}(x, y)$ and

$$
u_{y}=u_{y}(x, y)
$$

- Similarly for 3D

$$
\begin{aligned}
& \mathbf{u}=u_{x} \mathbf{i}+u_{y} \mathbf{j}+u_{z} \mathbf{k} \\
& u_{x}=u_{x}(x, y, z), u_{y}=u_{y}(x, y, z) \\
& \text { and } u_{z}=u_{z}(x, y, z)
\end{aligned}
$$

Displacement Field: Example

The displacement field for a body is given by
$\mathbf{u}=\left(x^{2}+y\right) \mathbf{i}+(3+z) \mathbf{j}+\left(x^{2}+2 y\right) \mathbf{k}$. What is the deformed position of a point originally at $(3,1,-2)$?

Displacement Field: Example

The displacement field for a body is given by
$\mathbf{u}=\left(x^{2}+y\right) \mathbf{i}+(3+z) \mathbf{j}+\left(x^{2}+2 y\right) \mathbf{k}$. What is the deformed position of a point originally at $(3,1,-2)$?
Solution:
Displacement vector \mathbf{u} at $(3,1,-2)$ is,
$\mathbf{u}=\left(3^{2}+1\right) \mathbf{i}+(3-2) \mathbf{j}+\left(3^{2}+2\right) \mathbf{k}$
i.e. $\mathbf{u}=10 \mathbf{i}+\mathbf{j}+11 \mathbf{k}$

The initial position vector of the point, $\mathbf{r}=3 \mathbf{i}+\mathbf{j}-2 \mathbf{k}$
Position vector of the point after deformation,
$\mathbf{r}^{\prime}=\mathbf{r}+\mathbf{u}=13 \mathbf{i}+2 \mathbf{j}+9 \mathbf{k}$

Strains at A Point

$$
\begin{aligned}
A A_{1} & =A_{2} A^{\prime}=u_{x} \\
B B_{1} & =u_{x}+\frac{\partial u_{x}}{\partial x} \Delta x \\
A A_{2} & =A_{1} A^{\prime}=u_{y} \\
D D_{1} & =u_{y}+\frac{\partial u_{y}}{\partial y} \Delta y \\
B_{1} B^{\prime} & =u_{y}+\frac{\partial u_{y}}{\partial x} \Delta x \\
D_{1} D^{\prime} & =u_{x}+\frac{\partial u_{x}}{\partial y} \Delta y
\end{aligned}
$$

Figure: Deformation of a rectangular element

Normal Strain ϵ_{X}

Figure: Deformation of a rectangular element
$\epsilon_{x x}$ or $\epsilon_{x}=\lim _{\Delta x \rightarrow 0} \frac{A^{\prime} B^{\prime}-A B}{A B}$

$$
\begin{aligned}
& \approx \lim _{\Delta x \rightarrow 0} \frac{A^{\prime} B_{2}-A B}{A B} \\
& =\lim _{\Delta x \rightarrow 0} \frac{A B+B B_{1}-A A_{1}-A B}{A B} \\
& =\lim _{\Delta x \rightarrow 0} \frac{B B_{1}-A A_{1}}{A B} \\
& =\lim _{\Delta x \rightarrow 0} \frac{u_{x}+\frac{\partial u_{x}}{\partial x} \Delta x-u_{x}}{\Delta x}=\frac{\partial u_{x}}{\partial x}
\end{aligned}
$$

$$
\epsilon_{x}=\frac{\partial u_{x}}{\partial x}
$$

Normal Strain ϵ_{y}

$$
\begin{aligned}
& \epsilon_{y y} \text { or } \epsilon_{y}=\lim _{\Delta x \rightarrow 0} \frac{A^{\prime} D^{\prime}-A D}{A D} \\
\approx & \lim _{\Delta y \rightarrow 0} \frac{A^{\prime} D_{2}-A D}{A D} \\
= & \lim _{\Delta y \rightarrow 0} \frac{A D+D D_{1}-A A_{2}-A D}{A D} \\
= & \lim _{\Delta y \rightarrow 0} \frac{D D_{1}-A A_{2}}{A D} \\
= & \lim _{\Delta y \rightarrow 0} \frac{u_{y}+\frac{\partial u_{y}}{\partial y} \Delta y-u_{y}}{\Delta y}=\frac{\partial u_{y}}{\partial y}
\end{aligned}
$$

Figure: Deformation of a rectangular element

$$
\epsilon_{y}=\frac{\partial u_{y}}{\partial y}
$$

Engineering Shear Strain $\gamma_{x y}$

$$
\begin{aligned}
& \gamma_{x y} \text { or } \gamma_{y x}=\lim _{\Delta x, \Delta y \rightarrow 0} \theta_{1}+\theta_{2} \\
& \approx \lim _{\Delta x, \Delta y \rightarrow 0}\left(\frac{B_{2} B^{\prime}}{A^{\prime} B_{2}}+\frac{D_{2} D^{\prime}}{A^{\prime} D_{2}}\right) \\
& =\lim _{\Delta x, \Delta y \rightarrow 0}\left(\frac{\frac{\partial u_{y}}{\partial x} \Delta x}{\Delta x+\frac{\partial u_{x}}{\partial x} \Delta x}+\frac{\frac{\partial u_{x}}{\partial y} \Delta y}{\Delta y+\frac{\partial u_{y}}{\partial y} \Delta y}\right) \\
& =\lim _{\Delta x, \Delta y \rightarrow 0}\left(\frac{\frac{\partial u_{y}}{\partial x}}{1+\frac{\partial u_{x}}{\partial x}}+\frac{\frac{\partial u_{x}}{\partial y}}{1+\frac{\partial u_{y}}{\partial y}}\right) \\
& \approx \lim _{\Delta x, \Delta y \rightarrow 0}\left(\frac{\partial u_{y}}{\partial x}+\frac{\partial u_{x}}{\partial y}\right) \\
& \text { Figure: Deformation of a } \\
& \text { rectangular element } \\
& \gamma_{x y}=\gamma_{y x}=\left(\frac{\partial u_{y}}{\partial x}+\frac{\partial u_{x}}{\partial y}\right)
\end{aligned}
$$

Rectangular Strain Components in 3-Dimensions

Linear or Normal Strains

$$
\begin{aligned}
\epsilon_{x} & =\frac{\partial u_{x}}{\partial x} \\
\epsilon_{y} & =\frac{\partial u_{y}}{\partial y} \\
\epsilon_{z} & =\frac{\partial u_{z}}{\partial z}
\end{aligned}
$$

Engineering Shear Strains

$$
\begin{aligned}
& \gamma_{x y}=\gamma_{y x}=\left(\frac{\partial u_{y}}{\partial x}+\frac{\partial u_{x}}{\partial y}\right) \\
& \gamma_{y z}=\gamma_{z y}=\left(\frac{\partial u_{z}}{\partial y}+\frac{\partial u_{y}}{\partial z}\right) \\
& \gamma_{z x}=\gamma_{x z}=\left(\frac{\partial u_{x}}{\partial z}+\frac{\partial u_{z}}{\partial x}\right)
\end{aligned}
$$

Tensorial Strain Components

Strain Tensor

$$
\left[\begin{array}{ccc}
\epsilon_{x} & \epsilon_{x y} & \epsilon_{x z} \\
\epsilon_{y x} & \epsilon_{y} & \epsilon_{y z} \\
\epsilon_{z x} & \epsilon_{z y} & \epsilon_{z}
\end{array}\right]
$$

Where,
$\epsilon_{i j}$ are called Cauchy's Shear Strain or Tensorial Shear Strain

$$
\begin{array}{ll}
\epsilon_{x y} \quad \text { or } \quad \epsilon_{y x} & =\frac{1}{2} \gamma_{x y}=\frac{1}{2} \gamma_{y x}=\frac{1}{2}\left(\frac{\partial u_{y}}{\partial x}+\frac{\partial u_{x}}{\partial y}\right) \\
\epsilon_{y z} \quad \text { or } \quad \epsilon_{z y}=\frac{1}{2} \gamma_{y z}=\frac{1}{2} \gamma_{z y}=\frac{1}{2}\left(\frac{\partial u_{z}}{\partial y}+\frac{\partial u_{y}}{\partial z}\right) \\
\epsilon_{z x} \quad \text { or } \quad \epsilon_{x z}=\frac{1}{2} \gamma_{z x}=\frac{1}{2} \gamma_{x z}=\frac{1}{2}\left(\frac{\partial u_{x}}{\partial z}+\frac{\partial u_{z}}{\partial x}\right)
\end{array}
$$

Strain Tensor

Strain Tensor

$$
\begin{aligned}
& {\left[\epsilon_{i j}\right]=\left[\begin{array}{ccc}
\epsilon_{x} & \epsilon_{x y} & \epsilon_{x z} \\
\epsilon_{y x} & \epsilon_{y} & \epsilon_{y z} \\
\epsilon_{z x} & \epsilon_{z y} & \epsilon_{z}
\end{array}\right]=\left[\begin{array}{ccc}
\epsilon_{x} & \frac{1}{2} \gamma_{x y} & \frac{1}{2} \gamma_{x z} \\
\frac{1}{2} \gamma_{y x} & \epsilon_{y} & \frac{1}{2} \gamma_{y z} \\
\frac{1}{2} \gamma_{z x} & \frac{1}{2} \gamma_{z y} & \epsilon_{z}
\end{array}\right] \text { is a Tensor }} \\
& \text { Engineering Strain }\left[\begin{array}{ccc}
\epsilon_{x} & \gamma_{x y} & \gamma_{x z} \\
\gamma_{y x} & \epsilon_{y} & \gamma_{y z} \\
\gamma_{z x} & \gamma_{z y} & \epsilon_{z}
\end{array}\right] \text { is not a Tensor }
\end{aligned}
$$

Strain-Displacement Relationship - Excercises

Consider the displacement field $\left[y^{2} \mathbf{i}+3 y z \mathbf{j}+\left(4+6 x^{2}\right) \mathbf{k}\right] 10^{-2}$ What are the rectangular strain components at point $P(1,0,2)$?

Strain-Displacement Relationship - Excercises

Consider the displacement field $\left[y^{2} \mathbf{i}+3 y z \mathbf{j}+\left(4+6 x^{2}\right) \mathbf{k}\right] 10^{-2}$ What are the rectangular strain components at point $P(1,0,2)$? Solution:

$$
u_{x}=y^{2}, u_{y}=3 y z \text { and } u_{z}=\left(4+6 x^{2}\right)
$$

Linear Strains:

$$
\begin{gathered}
\epsilon_{x}=\frac{\partial u_{x}}{\partial x}=\frac{\partial\left(y^{2}\right)}{\partial x} 10^{-2}=0 \\
\epsilon_{y}=\frac{\partial u_{y}}{\partial y}=\frac{\partial(3 y z)}{\partial y} 10^{-2}=3 z 10^{-2} \text { at } \mathrm{P}, \quad \epsilon_{y}=6 \times 10^{-2} \\
\epsilon_{z}=\frac{\partial u_{z}}{\partial z}=\frac{\partial\left(4+6 x^{2}\right)}{\partial y} 10^{-2}=0
\end{gathered}
$$

Strain-Displacement Relationship - Excercises

Shear Strains:

$$
\begin{gathered}
\gamma_{x y}=\left(\frac{\partial u_{y}}{\partial x}+\frac{\partial u_{x}}{\partial y}\right)=(0+2 y) \times 10^{-2} \\
\gamma_{x y} \text { at } \mathrm{P}, \quad=0 \\
\gamma_{y z}=\left(\frac{\partial u_{z}}{\partial y}+\frac{\partial u_{y}}{\partial z}\right)=(0+3 y) \times 10^{-2} \\
\gamma_{y z} \text { at } \mathrm{P}, \quad=0 \\
\gamma_{z x}=\left(\frac{\partial u_{x}}{\partial z}+\frac{\partial u_{z}}{\partial x}\right)=(0+12 x) \times 10^{-2} \\
\gamma_{z x} \text { at } \mathrm{P}, \quad=12 \times 10^{-2}
\end{gathered}
$$

Analogy between Stress and Strain Tensors

- Diagonal elements of stress tensor represent normal stress. Diagonal elements of strain tensor represent normal strain.
- Off-diagonal elements of the stress tensor represent the shear stresses on planes parallel to coordinate planes. The off-diagonal elements of the strain tensor are half of the shear strains on planes parallel to coordinate planes.
- Both stress and strain tensors are symmetric
- The extreme values of normal stresses called the principal stresses are the Eigen values of the stress tensor. The extreme values of normal strains from a point are given by the Eigen values of the strain tensor.
- The planes of principal stresses (principal planes)are given by Eigen vectors of stress tensor. Directions of principal strains(principal directions) are the Eigen vectors of strain tensor.
- The transformation rule is equally applicable for both stress and strain tensors.
- Stress and strain tensors are related through a fourth order tensor consisting of properties of material of the body

Linear Strain a Point along a Given Direction

If the state of strain at a point P is defined by the strain tensor,

$$
\left[\epsilon_{i j}\right]=\left[\begin{array}{ccc}
\epsilon_{x} & \epsilon_{x y} & \epsilon_{x z} \\
\epsilon_{y x} & \epsilon_{y} & \epsilon_{y z} \\
\epsilon_{z x} & \epsilon_{z y} & \epsilon_{z}
\end{array}\right]
$$

The linear strain at the point P in the direction $P Q$ with direction cosines n_{x}, n_{y}, and n_{z}, is given by,

$$
\epsilon_{P Q}=n_{x}^{2} \epsilon_{x}+n_{y}{ }^{2} \epsilon_{y}+n_{z}^{2} \epsilon_{z}+2 n_{x} n_{y} \epsilon_{x y}+2 n_{y} n_{z} \epsilon_{y z}+2 n_{z} n_{x} \epsilon_{z x}
$$

Strain along a perticular Direction - Excercise

The following state of strain exists at a point P,

$$
\left[\epsilon_{i j}\right]=\left[\begin{array}{ccc}
0.02 & -0.04 & 0 \\
-0.04 & 0.06 & -0.02 \\
0 & -0.02 & 0
\end{array}\right]
$$

In the direction PQ having direction cosines $n_{x}=0.6, n_{y}=0$ and $n_{z}=0.8$, determine $\epsilon_{P Q}$

Strain along a perticular Direction - Excercise

The following state of strain exists at a point P ,

$$
\left[\epsilon_{i j}\right]=\left[\begin{array}{ccc}
0.02 & -0.04 & 0 \\
-0.04 & 0.06 & -0.02 \\
0 & -0.02 & 0
\end{array}\right]
$$

In the direction PQ having direction cosines $n_{x}=0.6, n_{y}=0$ and $n_{z}=0.8$, determine $\epsilon_{P Q}$

Solution:

$$
\begin{aligned}
& \epsilon_{P Q}=n_{x}^{2} \epsilon_{x}+n_{y}{ }^{2} \epsilon_{y}+n_{z}^{2} \epsilon_{z}+2 n_{x} n_{y} \epsilon_{x y}+2 n_{y} n_{z} \epsilon_{y z}+2 n_{z} n_{x} \epsilon_{z x} \\
& \epsilon_{P Q}=0.02(0.36)+0.06(0)+0(0.64)-0.04(0)-0.02(0)+0(0.96)=0.007
\end{aligned}
$$

Principal Strains and Directions

A in the case of Principal Stresses, in order to obtain Principal strains and directions, a system of linear homogeneous equations can be formed.

$$
\begin{aligned}
& \left(\epsilon_{x}-\epsilon\right) n_{x}+\epsilon_{y x} n_{y}+\epsilon_{z x} n_{z}=0 \\
& \epsilon_{x y} n_{x}+\left(\epsilon_{y}-\epsilon\right) n_{y}+\epsilon_{z y} n_{z}=0 \\
& \epsilon_{x z} n_{x}+\epsilon_{y z} n_{y}+\left(\epsilon_{z}-\epsilon\right) n_{z}=0
\end{aligned}
$$

Principal Strains are given by,

$$
\left|\begin{array}{ccc}
\left(\epsilon_{x}-\epsilon\right) & \epsilon_{y x} & \epsilon_{z x} \\
\epsilon_{x y} & \left(\epsilon_{y}-\epsilon\right) & \epsilon_{z y} \\
\epsilon_{x z} & \epsilon_{y z} & \left(\epsilon_{z}-\epsilon\right)
\end{array}\right|=0
$$

Principal Strains and Directions

On expanding the above determinant, we get,

$$
\epsilon^{3}-J_{1} \epsilon^{2}+J_{2} \epsilon-J_{3}=0
$$

Where, J_{1}, J_{2} and J_{3} are Strain Invariants

$$
\begin{gathered}
J_{1}=\epsilon_{x}+\epsilon_{y}+\epsilon_{z} \\
J_{2}=\left|\begin{array}{cc}
\epsilon_{x} & \epsilon_{x y} \\
\epsilon_{y x} & \epsilon_{y}
\end{array}\right|+\left|\begin{array}{cc}
\epsilon_{y} & \epsilon_{z y} \\
\epsilon_{y z} & \epsilon_{z}
\end{array}\right|+\left|\begin{array}{cc}
\epsilon_{x} & \epsilon_{x z} \\
\epsilon_{z x} & \epsilon_{z}
\end{array}\right| \\
J_{3}=\left|\begin{array}{ccc}
\epsilon_{x} & \epsilon_{x y} & \epsilon_{x z} \\
\epsilon_{y x} & \epsilon_{y} & \epsilon_{y z} \\
\epsilon_{z x} & \epsilon_{z y} & \epsilon_{z}
\end{array}\right|
\end{gathered}
$$

Principal Strains and Directions

- The cubic equation $\epsilon^{3}-J_{1} \epsilon^{2}+J_{2} \epsilon-J_{3}=0$ has 3 real roots
- Each of this roots can be substituted to

$$
\begin{aligned}
& \left(\epsilon_{x}-\epsilon\right) n_{x}+\epsilon_{y x} n_{y}+\epsilon_{z x} n_{z}=0 \\
& \epsilon_{x y} n_{x}+\left(\epsilon_{y}-\epsilon\right) n_{y}+\epsilon_{z y} n_{z}=0 \\
& \epsilon_{x z} n_{x}+\epsilon_{y z} n_{y}+\left(\epsilon_{z}-\epsilon\right) n_{z}=0
\end{aligned}
$$

to get corresponding values of n_{x}, n_{y} and n_{z}

- In order to avoid trivial solution, the condition $n_{x}^{2}+n_{y}^{2}+n_{z}^{2}=1$ is used with any two of the above equations to obtain n_{x}, n_{y} and n_{z}

Principal Strains and Directions - Excercise

The displacement field in micro units for a body is given by,

$$
u=\left(x^{2}+y\right) \mathbf{i}+(3+z) \mathbf{j}+\left(x^{2}+2 y\right) \mathbf{k}
$$

Determine the principal strains at $(3,1,-2)$ and the direction of the minimum principal strain.

Solution :

The displacement components in micro units are, $u_{x}=\left(x^{2}+y\right)$,
$u_{y}=(3+z)$ and $u_{z}=\left(x^{2}+2 y\right)$
$\epsilon_{x}=\frac{\partial u_{x}}{\partial x}=2 x, \epsilon_{y}=\frac{\partial u_{y}}{\partial y}=0, \epsilon_{z}=\frac{\partial u_{z}}{\partial z}=0$

Principal Strains and Directions - Excercise

$\epsilon_{x y}=\frac{1}{2}\left(\frac{\partial u_{y}}{\partial x}+\frac{\partial u_{x}}{\partial y}\right)=\frac{1}{2}(0+1)=\frac{1}{2}$,
$\epsilon_{y z}=\frac{1}{2}\left(\frac{\partial u_{z}}{\partial y}+\frac{\partial u_{y}}{\partial z}\right)=\frac{1}{2}(2+1)=\frac{3}{2}$,
$\epsilon_{z x}=\frac{1}{2}\left(\frac{\partial u_{x}}{\partial z}+\frac{\partial u_{z}}{\partial x}\right)=\frac{1}{2}(0+2 x)=x$
At point $(3,1,-2)$ the strain components are therefore, $\epsilon_{x}=6, \epsilon_{y}=0, \epsilon_{z}=0$
$\epsilon_{x y}=\frac{1}{2}, \epsilon_{y z}=\frac{3}{2}, \epsilon_{z x}=3$
Strain Invariants are, $J_{1}=6, J_{2}=\frac{-23}{2}, J_{3}=-9$

Principal Strains and Directions - Excercise

The Cubic equation is,

$$
\epsilon^{3}-6 \epsilon^{2}-\frac{23}{2} \epsilon+9=0
$$

The roots of the above equation can be obtained as,
$\epsilon_{1}=+7.39, \epsilon_{2}=-2, \epsilon_{3}=+0.61$
As a check, Invariants can be found out,
$J_{1}=6, J_{2}=-11.49, J_{3}=-9$
The minimum principal strain is -2 . For this, direction cosines are
$n_{x}=0.267, n_{y}=0.534, n_{z}=-0.801^{1}$
${ }^{1}$ Please refer the earlier exercise on principal stresses or textbook for details

Compatibility Conditions

- The displacement of a point can be represented by u_{x}, u_{y}, and u_{z} along the three axes x, y and z respectively.
- The deformation at a point is specified by the six strain components $\epsilon_{x}, \epsilon_{y}, \epsilon_{z}, \epsilon_{x y}$, $\epsilon_{y z}$ and $\epsilon_{z x}$
- Determination of strains from displacements involves only differentiation
- Determination of three displacement components from six strain components needs Compatibility Conditions to be satisfied by strain components

Compatible Displacements

Non-Compatible Displacements

Figure: Deformations

Compatibility Conditions

These equations describe the relations between the components of strain and was put forward by St. Venant.
Consider the following relationships

$$
\epsilon_{x}=\frac{\partial u_{x}}{\partial x} \quad \epsilon_{y}=\frac{\partial u_{y}}{\partial y} \quad \epsilon_{z}=\frac{\partial u_{z}}{\partial z}
$$

Differentiating the first relation twice with respect to y and second with respect to x, we get

$$
\begin{align*}
& \frac{\partial^{2} \epsilon_{x}}{\partial y^{2}}=\frac{\partial^{3} u_{x}}{\partial y^{2} \partial x}=\frac{\partial^{2}}{\partial x \partial y}\left(\frac{\partial u_{x}}{\partial y}\right) \tag{i}\\
& \frac{\partial^{2} \epsilon_{y}}{\partial x^{2}}=\frac{\partial^{3} u_{y}}{\partial x^{2} \partial y}=\frac{\partial^{2}}{\partial x \partial y}\left(\frac{\partial u_{y}}{\partial x}\right) \tag{ii}
\end{align*}
$$

Compatibility Conditions

Adding (i) and (ii), $\frac{\partial^{2} \epsilon_{x}}{\partial y^{2}}+\frac{\partial^{2} \epsilon_{y}}{\partial x^{2}}=\frac{\partial^{2}}{\partial x \partial y}\left(\frac{\partial u_{x}}{\partial y}+\frac{\partial u_{y}}{\partial x}\right)$

$$
\frac{\partial^{2} \epsilon_{x}}{\partial y^{2}}+\frac{\partial^{2} \epsilon_{y}}{\partial x^{2}}=\frac{\partial^{2} \gamma_{x y}}{\partial x \partial y}
$$

Similarly, considering $\epsilon_{y}, \epsilon_{z}$ \& $\gamma_{y z}$ and $\epsilon_{z}, \epsilon_{x}$ \& $\gamma_{z x}$ two more equations can be formed.

$$
\begin{aligned}
& \frac{\partial^{2} \epsilon_{y}}{\partial z^{2}}+\frac{\partial^{2} \epsilon_{z}}{\partial y^{2}}=\frac{\partial^{2} \gamma_{y z}}{\partial y \partial z} \\
& \frac{\partial^{2} \epsilon_{z}}{\partial x^{2}}+\frac{\partial^{2} \epsilon_{x}}{\partial z^{2}}=\frac{\partial^{2} \gamma_{z x}}{\partial z \partial x}
\end{aligned}
$$

Compatibility Conditions

Considering the following relationships,

$$
\gamma_{x y}=\left(\frac{\partial u_{y}}{\partial x}+\frac{\partial u_{x}}{\partial y}\right) \quad \gamma_{y z}=\left(\frac{\partial u_{z}}{\partial y}+\frac{\partial u_{y}}{\partial z}\right) \quad \gamma_{z x}=\left(\frac{\partial u_{x}}{\partial z}+\frac{\partial u_{z}}{\partial x}\right)
$$

Differentiating the first one with respect to z, second one with respect to x and last one with respect to y, we get

$$
\begin{gathered}
\frac{\partial \gamma_{x y}}{\partial z}=\left(\frac{\partial^{2} u_{y}}{\partial z \partial x}+\frac{\partial^{2} u_{x}}{\partial z \partial y}\right) \quad \frac{\partial \gamma_{y z}}{\partial x}=\left(\frac{\partial^{2} u_{z}}{\partial x \partial y}+\frac{\partial u_{y}}{\partial x \partial z}\right) \\
\frac{\partial \gamma_{z x}}{\partial y}=\left(\frac{\partial^{2} u_{x}}{\partial y \partial z}+\frac{\partial^{2} u_{z}}{\partial y \partial x}\right)
\end{gathered}
$$

Compatibility Conditions

Adding the last two equations and subtracting the first equation we get,

$$
\frac{\partial \gamma_{y z}}{\partial x}+\frac{\partial \gamma_{z x}}{\partial y}-\frac{\partial \gamma_{x y}}{\partial z}=2 \frac{\partial^{2} u_{z}}{\partial x \partial y}
$$

Differentiating with respect to z, this becomes

$$
\frac{\partial}{\partial z}\left(\frac{\partial \gamma_{y z}}{\partial x}+\frac{\partial \gamma_{z x}}{\partial y}-\frac{\partial \gamma_{x y}}{\partial z}\right)=2 \frac{\partial^{3} u_{z}}{\partial x \partial y \partial z}=2 \frac{\partial^{2} \epsilon_{z}}{\partial x \partial y}
$$

Other equations can be obtained by cyclic change of subscripts.

Compatibility Conditions

$$
\frac{\partial}{\partial z}\left(\frac{\partial \gamma_{y z}}{\partial x}+\frac{\partial \gamma_{z x}}{\partial y}-\frac{\partial \gamma_{x y}}{\partial z}\right)=2 \frac{\partial^{2} \epsilon_{z}}{\partial x \partial y}
$$

$$
\frac{\partial}{\partial x}\left(\frac{\partial \gamma_{z x}}{\partial y}+\frac{\partial \gamma_{x y}}{\partial z}-\frac{\partial \gamma_{y z}}{\partial x}\right)=2 \frac{\partial^{2} \epsilon_{x}}{\partial y \partial z}
$$

$$
\frac{\partial}{\partial y}\left(\frac{\partial \gamma_{x y}}{\partial z}+\frac{\partial \gamma_{y z}}{\partial x}-\frac{\partial \gamma_{z x}}{\partial y}\right)=2 \frac{\partial^{2} \epsilon_{y}}{\partial z \partial x}
$$

These equations are called Saint Venant's equations of compatibility.

Compatibility Conditions-Excercises

Find the conditions needed to hold between the constants a_{1} to a_{6} so that the following is a possible strain field. $\epsilon_{x}=a_{1}\left(x^{2}+y^{2}\right)$; $\epsilon_{y}=a_{2}\left(y^{2}+z^{2}\right) ; \epsilon_{z}=a_{3}\left(z^{2}+x^{2}\right) ; \gamma_{x y}=a_{4} x y ; \gamma_{y z}=a_{5} y z ;$ $\gamma_{z x}=a_{6} z x$

Compatibility Conditions-Excercises

Find the conditions needed to hold between the constants a_{1} to a_{6} so that the following is a possible strain field. $\epsilon_{X}=a_{1}\left(x^{2}+y^{2}\right)$; $\epsilon_{y}=a_{2}\left(y^{2}+z^{2}\right) ; \epsilon_{z}=a_{3}\left(z^{2}+x^{2}\right) ; \gamma_{x y}=a_{4} x y ; \gamma_{y z}=a_{5} y z ;$ $\gamma_{z x}=a_{6} z x$
Solution: From compatibility conditions,

$$
\begin{gather*}
\frac{\partial^{2} \epsilon_{x}}{\partial y^{2}}+\frac{\partial^{2} \epsilon_{y}}{\partial x^{2}}=\frac{\partial^{2} \gamma_{x y}}{\partial x \partial y} \\
2 a_{1}+0=a_{4} \\
2 a_{1}=a_{4} \tag{6.1}
\end{gather*}
$$

Similarly,

$$
\begin{gather*}
\frac{\partial^{2} \epsilon_{y}}{\partial z^{2}}+\frac{\partial^{2} \epsilon_{z}}{\partial y^{2}}=\frac{\partial^{2} \gamma_{y z}}{\partial x \partial y} \\
2 a_{2}+0=a_{5} \\
2 a_{2}=a_{5} \tag{6.2}\\
\frac{\partial^{2} \epsilon_{z}}{\partial x^{2}}+\frac{\partial^{2} \epsilon_{x}}{\partial z^{2}}=\frac{\partial^{2} \gamma_{z x}}{\partial x \partial y} \\
2 a_{3}+0=a_{6} \\
2 a_{3}=a_{6} \tag{6.3}
\end{gather*}
$$

$$
\begin{gathered}
\frac{\partial}{\partial z}\left(\frac{\partial \gamma_{y z}}{\partial x}+\frac{\partial \gamma_{z x}}{\partial y}-\frac{\partial \gamma_{x y}}{\partial z}\right)=2 \frac{\partial^{2} \epsilon_{z}}{\partial x \partial y} \\
\frac{\partial}{\partial z}(0+0+0)=0
\end{gathered}
$$

This condition is identically satisfied.

$$
\begin{aligned}
\frac{\partial}{\partial x}\left(\frac{\partial \gamma_{z x}}{\partial y}+\frac{\partial \gamma_{x y}}{\partial z}-\frac{\partial \gamma_{y z}}{\partial x}\right) & =2 \frac{\partial^{2} \epsilon_{x}}{\partial x \partial y} \\
\frac{\partial}{\partial y}\left(\frac{\partial \gamma_{x y}}{\partial z}+\frac{\partial \gamma_{y z}}{\partial x}-\frac{\partial \gamma_{z x}}{\partial y}\right) & =2 \frac{\partial^{2} \epsilon_{y}}{\partial x \partial y}
\end{aligned}
$$

These two conditions are also identically satisfied.
Hence, The conditions needed to be satisfied between constants a_{1} to a_{6} are,

$$
2 a_{1}=a_{4}, \quad 2 a_{2}=a_{5} \quad \text { and } \quad 2 a_{3}=a_{6}
$$

