Two Dimensional Problems in Elasticity

Advanced Mechanics of Solids ME202

Arun Shal U B Department of Mechanical Engineering College of Engineering Thalassery

February 8, 2018

(D) (A) (A)

Outline

2-D problems in elasticity

Plane stress and plane strain problems

Stress compatibility equation

Airy's stress function and equation

Polynomial method of solution

Solution for bending of a cantilever with an end load

2-D problems in elasticity

- The 3X3 matrices of stress and strain at a point in 3D problems is simplified to 2X2 in 2D problems
- These problems are defined in a region over a plane.
- > 2D problems in elasticity can be classified in to
 - Plane stress
 - Plane Strain
 - Axi-symmetric

► The stress and strain tensors of 2D problems in x-y plane are $\sigma = \begin{bmatrix} \sigma_x & \tau_{xy} \\ \tau_{yx} & \sigma_y \end{bmatrix} \quad \text{and} \quad \epsilon = \begin{bmatrix} \epsilon_x & \frac{\gamma_{xy}}{2} \\ \frac{\gamma_{xy}}{2} & \epsilon_y \end{bmatrix}$ Rest of the terms in 3D Tensor are either zero or related to those present in the 2X2 matrices by Hook's law

> < (2) < (2) < (2) < (2) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) <

Plane Stress

- Plane stress is defined to be a state of stress in which normal stress σ_z, and shear stresses τ_{xz} and τ_{yz} directed perpendicular to x-y plane are assumed to be zero.
- Plane stress typically occurs in thin flat plates that are acted upon only by load forces that are parallel to them.

Figure: Plane stress

Plane Stress

Conditions for plane stress

 $\sigma_z = \tau_{xz} = \tau_{yz} = 0$, All other stress/strain components are independent of z-coordinate.

Generalized Hook's law

$$\epsilon_{x} = \frac{1}{E} (\sigma_{x} - \nu \sigma_{y})$$

$$\epsilon_{y} = \frac{1}{E} (\sigma_{y} - \nu \sigma_{x})$$

$$\epsilon_{z} = \frac{-\nu}{E} (\sigma_{x} + \sigma_{y}) \quad \text{In plane stress} \quad \epsilon_{z} \neq 0$$

$$\epsilon_{xy} = \frac{1}{2\mu} \tau_{xy} \quad \text{Or} \quad \tau_{xy} = G \gamma_{xy}$$

Plane Stress

Equilibrium conditions

$$\frac{\partial \sigma_x}{\partial x} + \frac{\partial \tau_{xy}}{\partial y} + \frac{\partial \tau_{xz}}{\partial z} + b_x = 0, \quad \text{Since} \quad \frac{\partial}{\partial z} = 0$$
$$\frac{\partial \tau_{xy}}{\partial x} + \frac{\partial \sigma_y}{\partial y} + \frac{\partial \tau_{yz}}{\partial z} + b_y = 0, \quad \text{Since} \quad \frac{\partial}{\partial z} = 0$$
$$\frac{\partial \tau_{xz}}{\partial x} + \frac{\partial \tau_{yz}}{\partial y} + \frac{\partial \sigma_z}{\partial z} + b_z = 0, \quad \text{Since} \quad \tau_{xz} = \tau_{yz} = b_z = 0, \quad \frac{\partial}{\partial z} = 0$$

イロン イヨン イヨン イヨン

æ

Plane Stress

Equilibrium conditions

$$\frac{\partial \sigma_x}{\partial x} + \frac{\partial \tau_{xy}}{\partial y} + b_x = 0$$
$$\frac{\partial \tau_{xy}}{\partial x} + \frac{\partial \sigma_y}{\partial y} + b_y = 0$$

Compatibility conditions

$$\frac{\partial^2 \epsilon_x}{\partial y^2} + \frac{\partial^2 \epsilon_y}{\partial x^2} = \frac{\partial^2 \gamma_{xy}}{\partial x \partial y}$$

イロン イヨン イヨン イヨン

æ

Plane Strain

- Plane strain is defined to be a state of strain in which the strain normal to the x-y plane, ε_z and shear strains γ_{xz} and γ_{yz} are assumed to be zero.
- This is possible, when the dimension of the solid is very large in z-direction compared to x and y directions, or when the displacement in a particular direction is

In plane strain, all the cross-sections parallel to the plane have the same stress pattern

Figure: Plane strain

arrested

Advanced Mechanics of Solids ME202

Two Dimensional Problems in Elasticity

Plane Strain

Conditions for plane strain

 $\epsilon_z = \gamma_{xz} = \gamma_{yz} = 0, u_z = 0$ All other stress/strain components are independent of z-coordinate.

Generalized Hook's law

$$\epsilon_{z} = \frac{1}{E} \left(\sigma_{z} - \nu \sigma_{x} - \nu \sigma_{y} \right) = 0 \implies \sigma_{z} = \nu (\sigma_{x} + \sigma_{y})$$

$$\epsilon_{x} = \frac{1}{E} \left(\sigma_{x} - \nu \sigma_{y} - \nu \sigma_{z} \right) = \frac{(1 - \nu^{2})}{E} \sigma_{x} - \frac{\nu (1 + \nu)}{E} \sigma_{y}$$

$$\epsilon_{y} = \frac{1}{E} \left(\sigma_{y} - \nu \sigma_{x} - \nu \sigma_{z} \right) = -\frac{\nu (1 + \nu)}{E} \sigma_{x} + \frac{(1 - \nu^{2})}{E} \sigma_{y}$$

$$\epsilon_{xy} = \frac{1}{2\mu} \tau_{xy} \quad \text{Or} \quad \tau_{xy} = G \gamma_{xy}$$

Plane Strain

Equilibrium conditions

$$\frac{\partial \sigma_x}{\partial x} + \frac{\partial \tau_{xy}}{\partial y} + b_x = 0$$
$$\frac{\partial \tau_{xy}}{\partial x} + \frac{\partial \sigma_y}{\partial y} + b_y = 0$$

Compatibility conditions

$$\frac{\partial^2 \epsilon_x}{\partial y^2} + \frac{\partial^2 \epsilon_y}{\partial x^2} = \frac{\partial^2 \gamma_{xy}}{\partial x \partial y}$$

イロン イヨン イヨン イヨン

æ

Equivalance between Plane stress and Plane strain

- ► They both seek solutions for σ_x , σ_y , τ_{xy} and ϵ_x , ϵ_y , ϵ_{xy} as a function of x and y.
- They satisfy the same equilibrium and compatibility conditions.
- Only difference is in Generalized Hook's law.

Plane Stress

Plane Strain

Advanced Mechanics of Solids ME202 Two Dimensional Problems in Elasticity

Stress compatibility equation

Five out of the six compatibility equations are exactly satisfied by the components of strain of 2D problems. The only one compatibility equation that requires agreement is

$$\frac{\partial^2 \epsilon_x}{\partial y^2} + \frac{\partial^2 \epsilon_y}{\partial x^2} = \frac{\partial^2 \gamma_{xy}}{\partial x \partial y}$$
Using $\gamma_{xy} = \frac{1}{G} \tau_{xy}$ and $\frac{1}{G} = \frac{2(1+\nu)}{E}$, we get
$$\frac{\partial^2 \epsilon_x}{\partial y^2} + \frac{\partial^2 \epsilon_y}{\partial x^2} = \frac{2(1+\nu)}{E} \frac{\partial^2 \tau_{xy}}{\partial x \partial y}$$
(3.1)

イロト イポト イヨト イヨト

Stress compatibility equation

We have the equilibrium equations in 2D

$$\frac{\partial \sigma_x}{\partial x} + \frac{\partial \tau_{xy}}{\partial y} + b_x = 0 \tag{3.2}$$

$$\frac{\partial \tau_{xy}}{\partial x} + \frac{\partial \sigma_y}{\partial y} + b_y = 0$$
(3.3)

Differentiating (3.2) with respect to x, and (3.3) with respect to y and rearranging,

$$\frac{\partial^2 \tau_{xy}}{\partial x \partial y} = -\frac{\partial^2 \sigma_x}{\partial x^2} - \frac{\partial b_x}{\partial x}$$
(3.4)
$$\frac{\partial^2 \tau}{\partial x^2} = -\frac{\partial^2 \sigma_x}{\partial x^2} - \frac{\partial b_x}{\partial x}$$

$$\frac{\partial^2 T_{xy}}{\partial x \partial y} = -\frac{\partial^2 \partial^2 y}{\partial y^2} - \frac{\partial^2 b_y}{\partial y}$$
(3.5)

Stress compatibility equation

Adding (3.4) and (3.5) \implies

$$2\frac{\partial^2 \tau_{xy}}{\partial x \partial y} = -\left(\frac{\partial^2 \sigma_x}{\partial x^2} + \frac{\partial^2 \sigma_y}{\partial y^2} + \frac{\partial b_x}{\partial x} + \frac{\partial b_y}{\partial y}\right)$$
(3.6)

イロト イポト イヨト イヨト

э

By putting (3.6) in (3.1) \Longrightarrow

$$\frac{\partial^2 \epsilon_x}{\partial y^2} + \frac{\partial^2 \epsilon_y}{\partial x^2} = -\frac{(1+\nu)}{E} \left(\frac{\partial^2 \sigma_x}{\partial x^2} + \frac{\partial^2 \sigma_y}{\partial y^2} + \frac{\partial b_x}{\partial x} + \frac{\partial b_y}{\partial y} \right) \quad (3.7)$$

Stress compatibility equation

Rearranging (3.7), we get

$$E\left(\frac{\partial^{2}\epsilon_{x}}{\partial y^{2}} + \frac{\partial^{2}\epsilon_{y}}{\partial x^{2}}\right) + (1+\nu)\left(\frac{\partial^{2}\sigma_{x}}{\partial x^{2}} + \frac{\partial^{2}\sigma_{y}}{\partial y^{2}}\right)$$
$$= -(1+\nu)\left(\frac{\partial b_{x}}{\partial x} + \frac{\partial b_{y}}{\partial y}\right) \quad (3.8)$$

Now, Hook's law can be applied to relate ϵ_x and ϵ_y in terms of σ_x and σ_y and final equation will be different for plane stress and plane strain problems as Hook's law expressions are different.

(D) (A) (A)

Stress compatibility equation-Plane Stress

$$\epsilon_x = \frac{1}{E} (\sigma_x - \nu \sigma_y) \implies E \epsilon_x = (\sigma_x - \nu \sigma_y)$$
 (3.9)

$$\epsilon_y = \frac{1}{E} (\sigma_y - \nu \sigma_x) \implies E \epsilon_y = (\sigma_y - \nu \sigma_x)$$
 (3.10)

Differentiating (3.9) partially w.r.t x and (3.10) partially w.r.t y,

$$E \frac{\partial^2 \epsilon_x}{\partial y^2} = \frac{\partial^2 \sigma_x}{\partial y^2} - \nu \frac{\partial^2 \sigma_y}{\partial y^2}$$
(3.11)
$$E \frac{\partial^2 \epsilon_y}{\partial x^2} = \frac{\partial^2 \sigma_y}{\partial x^2} - \nu \frac{\partial^2 \sigma_x}{\partial x^2}$$
(3.12)

(日) (周) (王) (王)

Stress compatibility equation-Plane Stress

Adding (3.11) and (3.12) and rearranging,

$$E\left(\frac{\partial^{2}\epsilon_{x}}{\partial y^{2}} + \frac{\partial^{2}\epsilon_{y}}{\partial x^{2}}\right)$$
$$= \left(\frac{\partial^{2}\sigma_{x}}{\partial y^{2}} + \frac{\partial^{2}\sigma_{y}}{\partial x^{2}}\right) - \nu\left(\frac{\partial^{2}\sigma_{x}}{\partial x^{2}} + \frac{\partial^{2}\sigma_{y}}{\partial y^{2}}\right) \quad (3.13)$$

Substituting (3.13) in (3.8),

$$\begin{pmatrix} \frac{\partial^2 \sigma_x}{\partial y^2} + \frac{\partial^2 \sigma_y}{\partial x^2} \end{pmatrix} - \nu \left(\frac{\partial^2 \sigma_x}{\partial x^2} + \frac{\partial^2 \sigma_y}{\partial y^2} \right) + (1+\nu) \left(\frac{\partial^2 \sigma_x}{\partial x^2} + \frac{\partial^2 \sigma_y}{\partial y^2} \right)$$
$$= -(1+\nu) \left(\frac{\partial b_x}{\partial x} + \frac{\partial b_y}{\partial y} \right) \quad (3.14)$$

Stress compatibility equation-Plane Stress

$$\frac{\partial^2 \sigma_x}{\partial x^2} + \frac{\partial^2 \sigma_y}{\partial x^2} + \frac{\partial^2 \sigma_y}{\partial y^2} + \frac{\partial^2 \sigma_x}{\partial y^2} = -(1+\nu) \left(\frac{\partial b_x}{\partial x} + \frac{\partial b_y}{\partial y}\right) \quad (3.15)$$

$$\frac{\partial^2}{\partial x^2} \left(\sigma_x + \sigma_y \right) + \frac{\partial^2}{\partial y^2} \left(\sigma_x + \sigma_y \right) \\ = -(1+\nu) \left(\frac{\partial b_x}{\partial x} + \frac{\partial b_y}{\partial y} \right) \quad (3.16)$$

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)(\sigma_x + \sigma_y) = -(1 + \nu)\left(\frac{\partial b_x}{\partial x} + \frac{\partial b_y}{\partial y}\right) \quad (3.17)$$

Stress compatibility equation-Plane Stress

$$\nabla^2 \left(\sigma_x + \sigma_y \right) = -(1+\nu) \left(\frac{\partial b_x}{\partial x} + \frac{\partial b_y}{\partial y} \right)$$
(3.18)

イロト イポト イヨト イヨト

Where $\nabla^2 = \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)$ is the Laplacian operator. Now, equations (3.2), (3.3) and the equation (3.18) make three equations for solving three unknowns σ_x , σ_y and τ_{xy} of a plane stress elasticity problem. Equation (3.18) is called **Stress** compatibility equation

Stress compatibility equation-Plane Strain

$$\epsilon_{x} = \frac{(1-\nu^{2})}{E}\sigma_{x} - \frac{\nu(1+\nu)}{E}\sigma_{y} \Longrightarrow$$
$$E\epsilon_{x} = (1+\nu)[(1-\nu)\sigma_{x} - \nu\sigma_{y}] \quad (3.19)$$

$$\epsilon_{y} = -\frac{\nu(1+\nu)}{E}\sigma_{x} + \frac{(1-\nu^{2})}{E}\sigma_{y} \Longrightarrow$$
$$E\epsilon_{y} = (1+\nu)[-\nu\sigma_{x} + (1-\nu)\sigma_{y}] \quad (3.20)$$

Differentiating (3.19) w.r.t y and (3.20) w.r.t x we get,

$$E\frac{\partial^{2}\epsilon_{x}}{\partial y^{2}} = (1+\nu)\left[(1-\nu)\frac{\partial^{2}\sigma_{x}}{\partial y^{2}} - \nu\frac{\partial^{2}\sigma_{y}}{\partial y^{2}}\right]$$
(3.21)

$$E\frac{\partial^{2}\epsilon_{y}}{\partial y^{2}} = (1+\nu)\left[(1-\nu)\frac{\partial^{2}\sigma_{y}}{\partial y^{2}} - \nu\frac{\partial^{2}\sigma_{y}}{\partial y^{2}}\right]$$
(3.21)
Advanced Mechanics of Solids ME202
Two Dimensional Problems in Elasticity

Stress compatibility equation-Plane Strain

$$(3.21)+(3.22) \Longrightarrow$$

$$E\left(\frac{\partial^{2}\epsilon_{x}}{\partial y^{2}} + \frac{\partial^{2}\epsilon_{y}}{\partial x^{2}}\right) = (1+\nu)\left[(1-\nu)\frac{\partial^{2}\sigma_{x}}{\partial y^{2}} - \nu\frac{\partial^{2}\sigma_{y}}{\partial y^{2}} + (1-\nu)\frac{\partial^{2}\sigma_{y}}{\partial x^{2}} - \nu\frac{\partial^{2}\sigma_{x}}{\partial x^{2}}\right] \quad (3.23)$$

Substituting (3.23) in (3.8) we get,

$$(1+\nu)\left[(1-\nu)\frac{\partial^2\sigma_x}{\partial y^2} - \nu\frac{\partial^2\sigma_y}{\partial y^2} + (1-\nu)\frac{\partial^2\sigma_y}{\partial x^2} - \nu\frac{\partial^2\sigma_x}{\partial x^2}\right] + (1+\nu)\left(\frac{\partial^2\sigma_x}{\partial x^2} + \frac{\partial^2\sigma_y}{\partial y^2}\right) = -(1+\nu)\left(\frac{\partial b_x}{\partial x} + \frac{\partial b_y}{\partial y}\right) \quad (3.24)$$

Stress compatibility equation-Plane Strain

$$\begin{bmatrix} (1-\nu)\frac{\partial^2 \sigma_x}{\partial y^2} - \nu \frac{\partial^2 \sigma_y}{\partial y^2} + (1-\nu)\frac{\partial^2 \sigma_y}{\partial x^2} - \nu \frac{\partial^2 \sigma_x}{\partial x^2} \end{bmatrix} + \\ & \left(\frac{\partial^2 \sigma_x}{\partial x^2} + \frac{\partial^2 \sigma_y}{\partial y^2}\right) = -\left(\frac{\partial b_x}{\partial x} + \frac{\partial b_y}{\partial y}\right) \quad (3.25)$$

$$(1-\nu)\frac{\partial^2 \sigma_x}{\partial y^2} + (1-\nu)\frac{\partial^2 \sigma_y}{\partial y^2} + (1-\nu)\frac{\partial^2 \sigma_y}{\partial x^2} + (1-\nu)\frac{\partial^2 \sigma_x}{\partial x^2} = -\left(\frac{\partial b_x}{\partial x} + \frac{\partial b_y}{\partial y}\right) \quad (3.26)$$

 $\frac{\partial^2 \sigma_x}{\partial v^2} + \frac{\partial^2 \sigma_y}{\partial v^2} + \frac{\partial^2 \sigma_y}{\partial x^2} + \frac{\partial^2 \sigma_x}{\partial x^2} = \frac{-1}{(1 - v)} \left(\frac{\partial b_x}{\partial x} + \frac{\partial b_y}{\partial v} \right) = (3.27)$ Advanced Mechanics of Solids ME202
Two Dimensional Problems in Elasticity

Stress compatibility equation-Plane Strain

$$\frac{\partial^2}{\partial x^2} \left(\sigma_x + \sigma_y \right) + \frac{\partial^2}{\partial y^2} \left(\sigma_x + \sigma_y \right) = \frac{-1}{(1-\nu)} \left(\frac{\partial b_x}{\partial x} + \frac{\partial b_y}{\partial y} \right) \quad (3.28)$$

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)(\sigma_x + \sigma_y) = \frac{-1}{(1-\nu)}\left(\frac{\partial b_x}{\partial x} + \frac{\partial b_y}{\partial y}\right) \quad (3.29)$$

$$\nabla^{2} \left(\sigma_{x} + \sigma_{y} \right) = \frac{-1}{\left(1 - \nu \right)} \left(\frac{\partial b_{x}}{\partial x} + \frac{\partial b_{y}}{\partial y} \right)$$
(3.30)

This is Stress compatibility equation of plane strain problem.

Stress compatibility equation

$$\frac{\partial \sigma_x}{\partial x} + \frac{\partial \tau_{xy}}{\partial y} + b_x = 0$$
$$\frac{\partial \tau_{xy}}{\partial x} + \frac{\partial \sigma_y}{\partial y} + b_y = 0$$

Plane Stress

$$abla^2 \left(\sigma_x + \sigma_y
ight) = -(1+
u) \left(rac{\partial b_x}{\partial x} + rac{\partial b_y}{\partial y}
ight)$$

Plane Strain

$$\nabla^2 \left(\sigma_x + \sigma_y \right) = \frac{-1}{(1-\nu)} \left(\frac{\partial b_x}{\partial x} + \frac{\partial b_y}{\partial y} \right)$$

臣

Airy's stress function-Zero body forces

- ► Introduce a scalar function φ(x, y), and write different components of stress tensor as derivatives of φ
- ► Assume zero body force, b_x = b_y = 0 then the equilibrium conditions becomes

$$\frac{\partial \sigma_x}{\partial x} + \frac{\partial \tau_{xy}}{\partial y} = 0, \quad \frac{\partial \tau_{xy}}{\partial x} + \frac{\partial \sigma_y}{\partial y} = 0$$

These can be automatically satisfied by defining

$$\sigma_x = \frac{\partial^2 \phi}{\partial y^2}, \quad \sigma_y = \frac{\partial^2 \phi}{\partial x^2}, \quad \tau_{xy} = -\frac{\partial^2 \phi}{\partial x \partial y}$$
(4.1)

The equilibrium conditions can be easily verified.

Airy's stress function-Zero body forces

 So only PDF we need to worry about is the compatibility condition.

Plane Stress:

$$abla^2\left(\sigma_x+\sigma_y
ight)=-(1+
u)\left(rac{\partial b_x}{\partial x}+rac{\partial b_y}{\partial y}
ight)$$

plane Strain

$$abla^2 \left(\sigma_x + \sigma_y
ight) = rac{-1}{\left(1 -
u
ight)} \left(rac{\partial b_x}{\partial x} + rac{\partial b_y}{\partial y}
ight)$$

 In case of Zero body forces both the above equations reduces to,

$$\nabla^2 \left(\sigma_x + \sigma_y \right) = 0 \tag{4.2}$$

Airy's stress function-Zero body forces

Substituting (4.1) in (4.2), we get

$$\nabla^2 \left(\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} \right) = 0$$

$$abla^2
abla^2 \phi = 0 \quad Or \quad
abla^4 \phi = 0$$
Where, $abla^4 = \left(\frac{\partial^4}{\partial x^4} + \frac{\partial^4}{\partial x^2 y^2} + \frac{\partial^4}{\partial y^4} \right)$

(D) (A) (A)

Airy's stress function-in presence of body forces

 When the body force can be expressed as the derivatives of a potential

$$b_x = \frac{\partial V}{\partial x}, \quad b_y = \frac{\partial V}{\partial y}$$
 (4.3)

(D) (A) (A)

Then Airy's stress function can be defined as

$$\sigma_{x} = \frac{\partial^{2}\phi}{\partial y^{2}} - V, \quad \sigma_{y} = \frac{\partial^{2}\phi}{\partial x^{2}} - V, \quad \tau_{xy} = -\frac{\partial^{2}\phi}{\partial x \partial y} \quad (4.4)$$

The equilibrium conditions can be easily verified.

Airy's stress function-in presence of body forces

> The equilibrium equations can be easily verified.

$$\frac{\partial \sigma_x}{\partial x} + \frac{\partial \tau_{xy}}{\partial y} + b_x = 0$$
$$\frac{\partial \tau_{xy}}{\partial x} + \frac{\partial \sigma_y}{\partial y} + b_y = 0$$

The compatibility conditions become,
 Plane stress
 Plane stain

$$\nabla^4 \phi = (1 - \nu) \nabla^2 V$$

$$\nabla^4 \phi = \left(\frac{1-2\nu}{1-\nu}\right) \nabla^2 V$$

(D) (A) (A)

Polynomial of Degree One - An unstressed body

Consider
$$\phi(x, y) = a_1 x + b_1 y$$

$$\sigma_x = \frac{\partial^2 \phi}{\partial y^2} = 0, \quad \sigma_y = \frac{\partial^2 \phi}{\partial x^2} = 0, \quad \tau_{xy} = -\frac{\partial^2 \phi}{\partial x \partial y} = 0$$

The components of stress are zero. It represents an unstressed body.

Polynomial of Degree Two

Consider
$$\phi(x, y) = a_2 x^2 + b_2 x y + c_2 y^2$$

$$\sigma_x = \frac{\partial^2 \phi}{\partial y^2} = 2c_2, \quad \sigma_y = \frac{\partial^2 \phi}{\partial x^2} = 2a_2, \quad \tau_{xy} = -\frac{\partial^2 \phi}{\partial x \partial y} = 0$$

The components of stress are constant over the region(except shear). It represents a constant stress field.

If
$$a_2 = b_2 = 0$$
 and $c_2 = \frac{F}{2A}$, $\phi(x, y) = \frac{Fy^2}{2A}$,
 $\sigma_x = \frac{F}{A}$, $\sigma_y = 0$, $\tau_{xy} = 0$
This represents stress in an axial force member of area A applied
an axial force F

by

(D) (A) (A)

Polynomial of Degree Three

Consider
$$\phi(x, y) = a_3 x^3 + b_3 x^2 y + c_3 x y^2 + d_3 y^3$$

$$\sigma_x = 2c_3x + 6d_3y, \quad \sigma_y = 6a_3x + 2b_3y, \quad \tau_{xy} = -2(b_3x + c_3y)$$

The components of stresses represents a linearly varying stress field. If $a_3 = b_3 = c_3 = 0$ and $d_3 = \frac{M}{6I}$, $\phi(x, y) = \frac{My^3}{6I}$, $\sigma_x = \frac{My}{I}$, $\sigma_y = 0$, $\tau_{xy} = 0$ This represents stresses in simple (pure) bending of a beam applied by a bending moment M.

・ロト ・聞ト ・ヨト ・ヨト

Polynomial of Degree Four

Consider
$$\phi(x, y) = a_4x^4 + b_4x^3y + c_4x^2y^2 + d_4xy^3 + e_4y^4$$

For this function to represent a stress function, it should satisfy

$$\nabla^4 \phi = \left(\frac{\partial^4 \phi}{\partial x^4} + \frac{\partial^4}{\partial \phi x^2 y^2} + \frac{\partial^4 \phi}{\partial y^4}\right) = 0$$

Substituting the partial derivatives,

$$24a_4 + 8c_4 + 24e_4 = 0 \therefore 3a_4 + 3e_4 + c_4 = 0$$

・ロト ・ 同ト ・ ヨト ・ ヨト

臣

Solution for bending of a cantilever with an end load

$$\phi(x,y) = axy + bxy^3$$

Clearly this function satisfies biharmonic equation of stress compatibility

$$\frac{\partial \phi}{\partial y} = ax + 3bxy^{2}$$
$$\sigma_{x} = \frac{\partial^{2} \phi}{\partial y^{2}} = 6bxy$$
$$\tau_{xy} = -\frac{\partial^{2} \phi}{\partial x \partial y} = -(a + 3by^{2})$$

Solution for bending of a cantilever with an end load

Boundary conditions of the problem are:

- 1. Stress free top and bottom layers, i.e. $\tau_{xy}(y = \pm h)$ Using this, we get $-(a + 3bh^2) = 0 \implies b = \frac{-a}{3h^2}$ $\tau_{xy} = -a\left(1 - \frac{y^2}{h^2}\right)$
- 2. Sum of total shear force on any cross section is equal to applied load P, i.e. $\int_{h}^{-h} \tau_{xy} t dy = P$

Solution for bending of a cantilever with an end load

$$\int_{-h}^{h} \tau_{xy} t dy = P$$

$$-\int_{-h}^{h} a \left(1 - \frac{y^2}{h^2}\right) t dy = -at \int_{-h}^{h} \left(1 - \frac{y^2}{h^2}\right) dy$$

$$= -at \left(y - \frac{y^3}{3h^2}\right)_{-h}^{h}$$

$$= -2at \left(h - \frac{h}{3}\right) = -\frac{4ath}{3} = P$$

$$\implies a = -\frac{3P}{4th}, \quad b = \frac{P}{4th^3}$$

Solution for bending of a cantilever with an end load

$$\phi(x, y) = \frac{P}{4th} \left[\frac{xy^3}{h^2} - 3xy \right]$$
$$\sigma_x = \frac{3P}{2th^3}xy$$
$$\sigma_y = 0$$
$$\tau_{xy} = \frac{3P}{4th^3}(h^2 - y^2)$$

イロト イポト イヨト イヨト

э