Two Dimensional Problems in Elasticity

Advanced Mechanics of Solids ME202

Arun Shal U B

Department of Mechanical Engineering College of Engineering Thalassery

February 8, 2018

Outline

2-D problems in elasticity
Plane stress and plane strain problems
Stress compatibility equation
Airy's stress function and equation
Polynomial method of solution
Solution for bending of a cantilever with an end load

2-D problems in elasticity

- The 3X3 matrices of stress and strain at a point in 3D problems is simplified to 2 X 2 in 2D problems
- These problems are defined in a region over a plane.
- 2D problems in elasticity can be classified in to
- Plane stress
- Plane Strain
- Axi-symmetric
- The stress and strain tensors of 2D problems in $x-y$ plane are $\sigma=\left[\begin{array}{cc}\sigma_{x} & \tau_{x y} \\ \tau_{y x} & \sigma_{y}\end{array}\right] \quad$ and $\quad \epsilon=\left[\begin{array}{cc}\epsilon_{x} & \frac{\gamma_{x y}}{2} \\ \frac{\gamma_{x y}}{2} & \epsilon_{y}\end{array}\right]$
Rest of the terms in 3D Tensor are either zero or related to those present in the 2X2 matrices by Hook's law

Plane Stress

- Plane stress is defined to be a state of stress in which normal stress σ_{z}, and shear stresses $\tau_{x z}$ and $\tau_{y z}$ directed perpendicular to $x-y$ plane are assumed to be zero.
- Plane stress typically occurs in thin flat plates that are acted upon only by load forces that are parallel to them.

Figure: Plane stress

Plane Stress

- Conditions for plane stress $\sigma_{z}=\tau_{x z}=\tau_{y z}=0$, All other stress/strain components are independent of z-coordinate.
- Generalized Hook's law

$$
\begin{gathered}
\epsilon_{x}=\frac{1}{E}\left(\sigma_{x}-\nu \sigma_{y}\right) \\
\epsilon_{y}=\frac{1}{E}\left(\sigma_{y}-\nu \sigma_{x}\right) \\
\epsilon_{z}=\frac{-\nu}{E}\left(\sigma_{x}+\sigma_{y}\right) \quad \text { In plane stress } \quad \epsilon_{z} \neq 0 \\
\epsilon_{x y}=\frac{1}{2 \mu} \tau_{x y} \quad \text { Or } \quad \tau_{x y}=G \gamma_{x y}
\end{gathered}
$$

Plane Stress

- Equilibrium conditions

$$
\begin{gathered}
\frac{\partial \sigma_{x}}{\partial x}+\frac{\partial \tau_{x y}}{\partial y}+\frac{\partial \tau_{x z}}{\partial z}+b_{x}=0, \quad \text { Since } \frac{\partial}{\partial z}=0 \\
\frac{\partial \tau_{x y}}{\partial x}+\frac{\partial \sigma_{y}}{\partial y}+\frac{\partial \tau_{y z}}{\partial z}+b_{y}=0, \\
\frac{\text { Since }}{} \frac{\partial}{\partial z}=0 \\
\frac{\partial \tau_{x z}}{\partial x}+\frac{\partial \tau_{y z}}{\partial y}+\frac{\partial \sigma_{z}}{\partial z}+b_{z}=0, \quad \text { Since } \quad \tau_{x z}=\tau_{y z}=b_{z}=0, \frac{\partial}{\partial z}=0
\end{gathered}
$$

Plane Stress

- Equilibrium conditions

$$
\begin{aligned}
& \frac{\partial \sigma_{x}}{\partial x}+\frac{\partial \tau_{x y}}{\partial y}+b_{x}=0 \\
& \frac{\partial \tau_{x y}}{\partial x}+\frac{\partial \sigma_{y}}{\partial y}+b_{y}=0
\end{aligned}
$$

- Compatibility conditions

$$
\frac{\partial^{2} \epsilon_{x}}{\partial y^{2}}+\frac{\partial^{2} \epsilon_{y}}{\partial x^{2}}=\frac{\partial^{2} \gamma_{x y}}{\partial x \partial y}
$$

Plane Strain

- Plane strain is defined to be a state of strain in which the strain normal to the $x-y$ plane, ϵ_{z} and shear strains $\gamma_{x z}$ and $\gamma_{y z}$ are assumed to be zero.
- This is possible, when the dimension of the solid is very large in z-direction compared to x and y directions, or when the displacement in a particular direction is

In plane strain, all the cross-sections parallel to the plane have the same stress pattern

Figure: Plane strain
Two Dimensional Problems in Elasticity

Plane Strain

- Conditions for plane strain
$\epsilon_{z}=\gamma_{x z}=\gamma_{y z}=0, u_{z}=0$ All other stress/strain components are independent of z-coordinate.
- Generalized Hook's law

$$
\begin{gathered}
\epsilon_{z}=\frac{1}{E}\left(\sigma_{z}-\nu \sigma_{x}-\nu \sigma_{y}\right)=0 \Longrightarrow \sigma_{z}=\nu\left(\sigma_{x}+\sigma_{y}\right) \\
\epsilon_{x}=\frac{1}{E}\left(\sigma_{x}-\nu \sigma_{y}-\nu \sigma_{z}\right)=\frac{\left(1-\nu^{2}\right)}{E} \sigma_{x}-\frac{\nu(1+\nu)}{E} \sigma_{y} \\
\epsilon_{y}=\frac{1}{E}\left(\sigma_{y}-\nu \sigma_{x}-\nu \sigma_{z}\right)=-\frac{\nu(1+\nu)}{E} \sigma_{x}+\frac{\left(1-\nu^{2}\right)}{E} \sigma_{y} \\
\epsilon_{x y}=\frac{1}{2 \mu} \tau_{x y} \quad \text { Or } \tau_{x y}=G \gamma_{x y}
\end{gathered}
$$

Plane Strain

- Equilibrium conditions

$$
\begin{aligned}
& \frac{\partial \sigma_{x}}{\partial x}+\frac{\partial \tau_{x y}}{\partial y}+b_{x}=0 \\
& \frac{\partial \tau_{x y}}{\partial x}+\frac{\partial \sigma_{y}}{\partial y}+b_{y}=0
\end{aligned}
$$

- Compatibility conditions

$$
\frac{\partial^{2} \epsilon_{x}}{\partial y^{2}}+\frac{\partial^{2} \epsilon_{y}}{\partial x^{2}}=\frac{\partial^{2} \gamma_{x y}}{\partial x \partial y}
$$

Equivalance between Plane stress and Plane strain

- They both seek solutions for $\sigma_{x}, \sigma_{y}, \tau_{x y}$ and $\epsilon_{x}, \epsilon_{y}, \epsilon_{x y}$ as a function of x and y.
- They satisfy the same equilibrium and compatibility conditions.
- Only difference is in Generalized Hook's law.

Plane Stress

$$
\epsilon_{x}=\frac{1}{E}\left(\sigma_{x}-\nu \sigma_{y}\right)
$$

$$
\epsilon_{y}=\frac{1}{E}\left(\sigma_{y}-\nu \sigma_{x}\right)
$$

$\epsilon_{z}=\frac{-\nu}{E}\left(\sigma_{x}+\sigma_{y}\right), \quad \epsilon_{x y}=\frac{1}{2 \mu} \tau_{x y}$

Stress compatibility equation

Five out of the six compatibility equations are exactly satisfied by the components of strain of 2D problems. The only one compatibility equation that requires agreement is

$$
\frac{\partial^{2} \epsilon_{x}}{\partial y^{2}}+\frac{\partial^{2} \epsilon_{y}}{\partial x^{2}}=\frac{\partial^{2} \gamma_{x y}}{\partial x \partial y}
$$

Using $\gamma_{x y}=\frac{1}{G} \tau_{x y}$ and $\frac{1}{G}=\frac{2(1+\nu)}{E}$, we get

$$
\begin{equation*}
\frac{\partial^{2} \epsilon_{x}}{\partial y^{2}}+\frac{\partial^{2} \epsilon_{y}}{\partial x^{2}}=\frac{2(1+\nu)}{E} \frac{\partial^{2} \tau_{x y}}{\partial x \partial y} \tag{3.1}
\end{equation*}
$$

Stress compatibility equation

We have the equilibrium equations in 2D

$$
\begin{align*}
& \frac{\partial \sigma_{x}}{\partial x}+\frac{\partial \tau_{x y}}{\partial y}+b_{x}=0 \tag{3.2}\\
& \frac{\partial \tau_{x y}}{\partial x}+\frac{\partial \sigma_{y}}{\partial y}+b_{y}=0 \tag{3.3}
\end{align*}
$$

Differentiating (3.2) with respect to x, and (3.3) with respect to y and rearranging,

$$
\begin{align*}
\frac{\partial^{2} \tau_{x y}}{\partial x \partial y} & =-\frac{\partial^{2} \sigma_{x}}{\partial x^{2}}-\frac{\partial b_{x}}{\partial x} \tag{3.4}\\
\frac{\partial^{2} \tau_{x y}}{\partial x \partial y} & =-\frac{\partial^{2} \sigma_{y}}{\partial y^{2}}-\frac{\partial b_{y}}{\partial y} \tag{3.5}
\end{align*}
$$

Stress compatibility equation

Adding (3.4) and (3.5) \Longrightarrow

$$
\begin{equation*}
2 \frac{\partial^{2} \tau_{x y}}{\partial x \partial y}=-\left(\frac{\partial^{2} \sigma_{x}}{\partial x^{2}}+\frac{\partial^{2} \sigma_{y}}{\partial y^{2}}+\frac{\partial b_{x}}{\partial x}+\frac{\partial b_{y}}{\partial y}\right) \tag{3.6}
\end{equation*}
$$

By putting (3.6) in (3.1) \Longrightarrow

$$
\begin{equation*}
\frac{\partial^{2} \epsilon_{x}}{\partial y^{2}}+\frac{\partial^{2} \epsilon_{y}}{\partial x^{2}}=-\frac{(1+\nu)}{E}\left(\frac{\partial^{2} \sigma_{x}}{\partial x^{2}}+\frac{\partial^{2} \sigma_{y}}{\partial y^{2}}+\frac{\partial b_{x}}{\partial x}+\frac{\partial b_{y}}{\partial y}\right) \tag{3.7}
\end{equation*}
$$

Stress compatibility equation

Rearranging (3.7), we get

$$
\begin{align*}
E\left(\frac{\partial^{2} \epsilon_{x}}{\partial y^{2}}+\frac{\partial^{2} \epsilon_{y}}{\partial x^{2}}\right)+(1+\nu) & \left(\frac{\partial^{2} \sigma_{x}}{\partial x^{2}}+\frac{\partial^{2} \sigma_{y}}{\partial y^{2}}\right) \\
& =-(1+\nu)\left(\frac{\partial b_{x}}{\partial x}+\frac{\partial b_{y}}{\partial y}\right) \tag{3.8}
\end{align*}
$$

Now, Hook's law can be applied to relate ϵ_{x} and ϵ_{y} in terms of σ_{x} and σ_{y} and final equation will be different for plane stress and plane strain problems as Hook's law expressions are different.

Stress compatibility equation-Plane Stress

$$
\begin{align*}
& \epsilon_{x}=\frac{1}{E}\left(\sigma_{x}-\nu \sigma_{y}\right) \Longrightarrow E \epsilon_{x}=\left(\sigma_{x}-\nu \sigma_{y}\right) \tag{3.9}\\
& \epsilon_{y}=\frac{1}{E}\left(\sigma_{y}-\nu \sigma_{x}\right) \Longrightarrow E \epsilon_{y}=\left(\sigma_{y}-\nu \sigma_{x}\right) \tag{3.10}
\end{align*}
$$

Differentiating (3.9) partially w.r.t x and (3.10) partially w.r.t y,

$$
\begin{align*}
& E \frac{\partial^{2} \epsilon_{x}}{\partial y^{2}}=\frac{\partial^{2} \sigma_{x}}{\partial y^{2}}-\nu \frac{\partial^{2} \sigma_{y}}{\partial y^{2}} \tag{3.11}\\
& E \frac{\partial^{2} \epsilon_{y}}{\partial x^{2}}=\frac{\partial^{2} \sigma_{y}}{\partial x^{2}}-\nu \frac{\partial^{2} \sigma_{x}}{\partial x^{2}} \tag{3.12}
\end{align*}
$$

Stress compatibility equation-Plane Stress

Adding (3.11) and (3.12) and rearranging,

$$
\begin{align*}
& E\left(\frac{\partial^{2} \epsilon_{x}}{\partial y^{2}}+\frac{\partial^{2} \epsilon_{y}}{\partial x^{2}}\right) \\
& \quad=\left(\frac{\partial^{2} \sigma_{x}}{\partial y^{2}}+\frac{\partial^{2} \sigma_{y}}{\partial x^{2}}\right)-\nu\left(\frac{\partial^{2} \sigma_{x}}{\partial x^{2}}+\frac{\partial^{2} \sigma_{y}}{\partial y^{2}}\right) \tag{3.13}
\end{align*}
$$

Substituting (3.13) in (3.8),

$$
\begin{align*}
\left(\frac{\partial^{2} \sigma_{x}}{\partial y^{2}}+\frac{\partial^{2} \sigma_{y}}{\partial x^{2}}\right)-\nu\left(\frac{\partial^{2} \sigma_{x}}{\partial x^{2}}\right. & \left.+\frac{\partial^{2} \sigma_{y}}{\partial y^{2}}\right)+(1+\nu)\left(\frac{\partial^{2} \sigma_{x}}{\partial x^{2}}+\frac{\partial^{2} \sigma_{y}}{\partial y^{2}}\right) \\
& =-(1+\nu)\left(\frac{\partial b_{x}}{\partial x}+\frac{\partial b_{y}}{\partial y}\right) \tag{3.14}
\end{align*}
$$

Stress compatibility equation-Plane Stress

$$
\begin{align*}
& \frac{\partial^{2} \sigma_{x}}{\partial x^{2}}+\frac{\partial^{2} \sigma_{y}}{\partial x^{2}}+\frac{\partial^{2} \sigma_{y}}{\partial y^{2}}+\frac{\partial^{2} \sigma_{x}}{\partial y^{2}}
\end{aligned}=-(1+\nu)\left(\frac{\partial b_{x}}{\partial x}+\frac{\partial b_{y}}{\partial y}\right) ~ \begin{aligned}
& \frac{\partial^{2}}{\partial x^{2}}\left(\sigma_{x}+\sigma_{y}\right)+\frac{\partial^{2}}{\partial y^{2}}\left(\sigma_{x}+\sigma_{y}\right) \tag{3.15}\\
&=-(1+\nu)\left(\frac{\partial b_{x}}{\partial x}+\frac{\partial b_{y}}{\partial y}\right) \\
&\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)\left(\sigma_{x}+\sigma_{y}\right)=-(1+\nu)\left(\frac{\partial b_{x}}{\partial x}+\frac{\partial b_{y}}{\partial y}\right) \tag{3.16}
\end{align*}
$$

Stress compatibility equation-Plane Stress

$$
\begin{equation*}
\nabla^{2}\left(\sigma_{x}+\sigma_{y}\right)=-(1+\nu)\left(\frac{\partial b_{x}}{\partial x}+\frac{\partial b_{y}}{\partial y}\right) \tag{3.18}
\end{equation*}
$$

Where $\nabla^{2}=\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)$ is the Laplacian operator.
Now, equations (3.2), (3.3) and the equation (3.18) make three equations for solving three unknowns σ_{x}, σ_{y} and $\tau_{x y}$ of a plane stress elasticity problem. Equation (3.18) is called Stress compatibility equation

Stress compatibility equation-Plane Strain

$$
\begin{gather*}
\epsilon_{x}=\frac{\left(1-\nu^{2}\right)}{E} \sigma_{x}-\frac{\nu(1+\nu)}{E} \sigma_{y} \Longrightarrow \\
E \epsilon_{x}=(1+\nu)\left[(1-\nu) \sigma_{x}-\nu \sigma_{y}\right] \tag{3.1}\\
\epsilon_{y}=-\frac{\nu(1+\nu)}{E} \sigma_{x}+\frac{\left(1-\nu^{2}\right)}{E} \sigma_{y} \Longrightarrow \\
E \epsilon_{y}=(1+\nu)\left[-\nu \sigma_{x}+(1-\nu) \sigma_{y}\right] \tag{3.20}
\end{gather*}
$$

Differentiating (3.19) w.r.t y and (3.20) w.r.t \times we get,

$$
\begin{equation*}
E \frac{\partial^{2} \epsilon_{x}}{\partial y^{2}}=(1+\nu)\left[(1-\nu) \frac{\partial^{2} \sigma_{x}}{\partial y^{2}}-\nu \frac{\partial^{2} \sigma_{y}}{\partial y^{2}}\right] \tag{3.21}
\end{equation*}
$$

Stress compatibility equation-Plane Strain

$$
\begin{align*}
& (3.21)+(3.22) \Longrightarrow \\
& E\left(\frac{\partial^{2} \epsilon_{x}}{\partial y^{2}}+\frac{\partial^{2} \epsilon_{y}}{\partial x^{2}}\right)= \\
& (1+\nu)\left[(1-\nu) \frac{\partial^{2} \sigma_{x}}{\partial y^{2}}-\nu \frac{\partial^{2} \sigma_{y}}{\partial y^{2}}+(1-\nu) \frac{\partial^{2} \sigma_{y}}{\partial x^{2}}-\nu \frac{\partial^{2} \sigma_{x}}{\partial x^{2}}\right] \tag{3.23}
\end{align*}
$$

Substituting (3.23) in (3.8) we get,

$$
\begin{gather*}
(1+\nu)\left[(1-\nu) \frac{\partial^{2} \sigma_{x}}{\partial y^{2}}-\nu \frac{\partial^{2} \sigma_{y}}{\partial y^{2}}+(1-\nu) \frac{\partial^{2} \sigma_{y}}{\partial x^{2}}-\nu \frac{\partial^{2} \sigma_{x}}{\partial x^{2}}\right]+ \\
(1+\nu)\left(\frac{\partial^{2} \sigma_{x}}{\partial x^{2}}+\frac{\partial^{2} \sigma_{y}}{\partial y^{2}}\right)=-(1+\nu)\left(\frac{\partial b_{x}}{\partial x}+\frac{\partial b_{y}}{\partial y}\right) \tag{3.24}
\end{gather*}
$$

Stress compatibility equation-Plane Strain

$$
\begin{align*}
& {\left[(1-\nu) \frac{\partial^{2} \sigma_{x}}{\partial y^{2}}-\nu \frac{\partial^{2} \sigma_{y}}{\partial y^{2}}+(1-\nu) \frac{\partial^{2} \sigma_{y}}{\partial x^{2}}-\nu \frac{\partial^{2} \sigma_{x}}{\partial x^{2}}\right]+} \\
& \left(\frac{\partial^{2} \sigma_{x}}{\partial x^{2}}+\frac{\partial^{2} \sigma_{y}}{\partial y^{2}}\right)=-\left(\frac{\partial b_{x}}{\partial x}+\frac{\partial b_{y}}{\partial y}\right) \tag{3.25}\\
& (1-\nu) \frac{\partial^{2} \sigma_{x}}{\partial y^{2}}+(1-\nu) \frac{\partial^{2} \sigma_{y}}{\partial y^{2}}+(1-\nu) \frac{\partial^{2} \sigma_{y}}{\partial x^{2}}+(1-\nu) \frac{\partial^{2} \sigma_{x}}{\partial x^{2}} \\
& =-\left(\frac{\partial b_{x}}{\partial x}+\frac{\partial b_{y}}{\partial y}\right) \tag{3.26}
\end{align*}
$$

Stress compatibility equation-Plane Strain

$$
\begin{gather*}
\frac{\partial^{2}}{\partial x^{2}}\left(\sigma_{x}+\sigma_{y}\right)+\frac{\partial^{2}}{\partial y^{2}}\left(\sigma_{x}+\sigma_{y}\right)=\frac{-1}{(1-\nu)}\left(\frac{\partial b_{x}}{\partial x}+\frac{\partial b_{y}}{\partial y}\right) \tag{3.28}\\
\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)\left(\sigma_{x}+\sigma_{y}\right)=\frac{-1}{(1-\nu)}\left(\frac{\partial b_{x}}{\partial x}+\frac{\partial b_{y}}{\partial y}\right) \tag{3.29}\\
\nabla^{2}\left(\sigma_{x}+\sigma_{y}\right)=\frac{-1}{(1-\nu)}\left(\frac{\partial b_{x}}{\partial x}+\frac{\partial b_{y}}{\partial y}\right) \tag{3.30}
\end{gather*}
$$

This is Stress compatibility equation of plane strain problem.

Stress compatibility equation

$$
\begin{aligned}
& \frac{\partial \sigma_{x}}{\partial x}+\frac{\partial \tau_{x y}}{\partial y}+b_{x}=0 \\
& \frac{\partial \tau_{x y}}{\partial x}+\frac{\partial \sigma_{y}}{\partial y}+b_{y}=0
\end{aligned}
$$

Plane Stress

$$
\nabla^{2}\left(\sigma_{x}+\sigma_{y}\right)=-(1+\nu)\left(\frac{\partial b_{x}}{\partial x}+\frac{\partial b_{y}}{\partial y}\right)
$$

Plane Strain

$$
\nabla^{2}\left(\sigma_{x}+\sigma_{y}\right)=\frac{-1}{(1-\nu)}\left(\frac{\partial b_{x}}{\partial x}+\frac{\partial b_{y}}{\partial y}\right)
$$

Airy's stress function-Zero body forces

- Introduce a scalar function $\phi(x, y)$, and write different components of stress tensor as derivatives of ϕ
- Assume zero body force, $b_{x}=b_{y}=0$ then the equilibrium conditions becomes

$$
\frac{\partial \sigma_{x}}{\partial x}+\frac{\partial \tau_{x y}}{\partial y}=0, \quad \frac{\partial \tau_{x y}}{\partial x}+\frac{\partial \sigma_{y}}{\partial y}=0
$$

- These can be automatically satisfied by defining

$$
\begin{equation*}
\sigma_{x}=\frac{\partial^{2} \phi}{\partial y^{2}}, \quad \sigma_{y}=\frac{\partial^{2} \phi}{\partial x^{2}}, \quad \tau_{x y}=-\frac{\partial^{2} \phi}{\partial x \partial y} \tag{4.1}
\end{equation*}
$$

The equilibrium conditions can be easily verified.

Airy's stress function-Zero body forces

- So only PDF we need to worry about is the compatibility condition.
Plane Stress:

$$
\nabla^{2}\left(\sigma_{x}+\sigma_{y}\right)=-(1+\nu)\left(\frac{\partial b_{x}}{\partial x}+\frac{\partial b_{y}}{\partial y}\right)
$$

plane Strain

$$
\nabla^{2}\left(\sigma_{x}+\sigma_{y}\right)=\frac{-1}{(1-\nu)}\left(\frac{\partial b_{x}}{\partial x}+\frac{\partial b_{y}}{\partial y}\right)
$$

- In case of Zero body forces both the above equations reduces to,

$$
\begin{equation*}
\nabla^{2}\left(\sigma_{x}+\sigma_{y}\right)=0 \tag{4.2}
\end{equation*}
$$

Airy's stress function-Zero body forces

- Substituting (4.1) in (4.2), we get

$$
\nabla^{2}\left(\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}\right)=0
$$

$$
\nabla^{2} \nabla^{2} \phi=0 \quad \text { Or } \quad \nabla^{4} \phi=0
$$

Where, $\nabla^{4}=\left(\frac{\partial^{4}}{\partial x^{4}}+\frac{\partial^{4}}{\partial x^{2} y^{2}}+\frac{\partial^{4}}{\partial y^{4}}\right)$

Airy's stress function-in presence of body forces

- When the body force can be expressed as the derivatives of a potential

$$
\begin{equation*}
b_{x}=\frac{\partial V}{\partial x}, \quad b_{y}=\frac{\partial V}{\partial y} \tag{4.3}
\end{equation*}
$$

- Then Airy's stress function can be defined as

$$
\begin{equation*}
\sigma_{x}=\frac{\partial^{2} \phi}{\partial y^{2}}-V, \quad \sigma_{y}=\frac{\partial^{2} \phi}{\partial x^{2}}-V, \quad \tau_{x y}=-\frac{\partial^{2} \phi}{\partial x \partial y} \tag{4.4}
\end{equation*}
$$

The equilibrium conditions can be easily verified.

Airy's stress function-in presence of body forces

- The equilibrium equations can be easily verified.

$$
\begin{aligned}
& \frac{\partial \sigma_{x}}{\partial x}+\frac{\partial \tau_{x y}}{\partial y}+b_{x}=0 \\
& \frac{\partial \tau_{x y}}{\partial x}+\frac{\partial \sigma_{y}}{\partial y}+b_{y}=0
\end{aligned}
$$

- The compatibility conditions become,

Plane stress

Plane stain

$$
\nabla^{4} \phi=(1-\nu) \nabla^{2} V
$$

$$
\nabla^{4} \phi=\left(\frac{1-2 \nu}{1-\nu}\right) \nabla^{2} V
$$

Polynomial of Degree One - An unstressed body

Consider $\phi(x, y)=a_{1} x+b_{1} y$

$$
\sigma_{x}=\frac{\partial^{2} \phi}{\partial y^{2}}=0, \quad \sigma_{y}=\frac{\partial^{2} \phi}{\partial x^{2}}=0, \quad \tau_{x y}=-\frac{\partial^{2} \phi}{\partial x \partial y}=0
$$

The components of stress are zero. It represents an unstressed body.

Polynomial of Degree Two

Consider $\phi(x, y)=a_{2} x^{2}+b_{2} x y+c_{2} y^{2}$

$$
\sigma_{x}=\frac{\partial^{2} \phi}{\partial y^{2}}=2 c_{2}, \quad \sigma_{y}=\frac{\partial^{2} \phi}{\partial x^{2}}=2 a_{2}, \quad \tau_{x y}=-\frac{\partial^{2} \phi}{\partial x \partial y}=0
$$

The components of stress are constant over the region(except shear). It represents a constant stress field.
If $a_{2}=b_{2}=0$ and $c_{2}=\frac{F}{2 A}, \phi(x, y)=\frac{F y^{2}}{2 A}$,
$\sigma_{x}=\frac{F}{A}, \quad \sigma_{y}=0, \quad \tau_{x y}=0$
This represents stress in an axial force member of area A applied by an axial force F

Polynomial of Degree Three

Consider $\phi(x, y)=a_{3} x^{3}+b_{3} x^{2} y+c_{3} x y^{2}+d_{3} y^{3}$

$$
\sigma_{x}=2 c_{3} x+6 d_{3} y, \quad \sigma_{y}=6 a_{3} x+2 b_{3} y, \quad \tau_{x y}=-2\left(b_{3} x+c_{3} y\right)
$$

The components of stresses represents a linearly varying stress field.
If $a_{3}=b_{3}=c_{3}=0$ and $d_{3}=\frac{M}{6 I}, \phi(x, y)=\frac{M y^{3}}{6 I}$,
$\sigma_{x}=\frac{M y}{l}, \quad \sigma_{y}=0, \quad \tau_{x y}=0$
This represents stresses in simple (pure) bending of a beam applied by a bending moment M .

Polynomial of Degree Four

Consider $\phi(x, y)=a_{4} x^{4}+b_{4} x^{3} y+c_{4} x^{2} y^{2}+d_{4} x y^{3}+e_{4} y^{4}$
For this function to represent a stress function, it should satisfy

$$
\nabla^{4} \phi=\left(\frac{\partial^{4} \phi}{\partial x^{4}}+\frac{\partial^{4}}{\partial \phi x^{2} y^{2}}+\frac{\partial^{4} \phi}{\partial y^{4}}\right)=0
$$

Substituting the partial derivatives,

$$
24 a_{4}+8 c_{4}+24 e_{4}=0 \therefore 3 a_{4}+3 e_{4}+c_{4}=0
$$

Solution for bending of a cantilever with an end load

$$
\phi(x, y)=a x y+b x y^{3}
$$

Clearly this function satisfies biharmonic equation of stress compatibility

$$
\begin{gathered}
\frac{\partial \phi}{\partial y}=a x+3 b x y^{2} \\
\sigma_{x}=\frac{\partial^{2} \phi}{\partial y^{2}}=6 b x y \\
\tau_{x y}=-\frac{\partial^{2} \phi}{\partial x \partial y}=-\left(a+3 b y^{2}\right)
\end{gathered}
$$

Solution for bending of a cantilever with an end load

Boundary conditions of the problem are:

1. Stress free top and bottom layers,
i.e. $\tau_{x y}(y= \pm h)$

Using this, we get $-\left(a+3 b h^{2}\right)=0 \Longrightarrow b=\frac{-a}{3 h^{2}}$

$$
\tau_{x y}=-a\left(1-\frac{y^{2}}{h^{2}}\right)
$$

2. Sum of total shear force on any cross section is equal to applied load P, i.e. $\int_{h}^{-h} \tau_{x y} t d y=P$

Stress compatibility equation

Solution for bending of a cantilever with an end load

$$
\begin{gathered}
\int_{-h}^{h} \tau_{x y} t d y=P \\
-\int_{-h}^{h} a\left(1-\frac{y^{2}}{h^{2}}\right) t d y=-a t \int_{-h}^{h}\left(1-\frac{y^{2}}{h^{2}}\right) d y \\
=-a t\left(y-\frac{y^{3}}{3 h^{2}}\right)_{-h}^{h} \\
=-2 a t\left(h-\frac{h}{3}\right)=-\frac{4 a t h}{3}=P \\
\Longrightarrow a=-\frac{3 P}{4 t h}, \quad b=\frac{P}{4 t h^{3}}
\end{gathered}
$$

Stress compatibility equation

Solution for bending of a cantilever with an end load

$$
\begin{gathered}
\phi(x, y)=\frac{P}{4 t h}\left[\frac{x y^{3}}{h^{2}}-3 x y\right] \\
\sigma_{x}=\frac{3 P}{2 t h^{3}} x y \\
\sigma_{y}=0 \\
\tau_{x y}=\frac{3 P}{4 t h^{3}}\left(h^{2}-y^{2}\right)
\end{gathered}
$$

